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Abstract— Automated driving is a safety critical process,
which requires complex decision making. In order to validate
driving decisions, it is possible to maintain at all times a
contingency maneuver, which transfers the vehicle to a safe
standstill, if other decision making processes fail. In this paper
we present a motion planner, which computes contingency
maneuvers for an automated vehicle in a 0.1[s] time frame. A
discrete set of motion primitives is assembled in a heuristic
best-first search. In order to speed up the search, an obstacle
sensitive heuristic is applied, which maintains properties
of bounded sub-optimality and completeness. A run-time
comparison with and without the obstacle sensitive heuristic is
presented on two exemplary collision avoidance scenarios.

Index Terms - Autonomous Agents; Motion and Path Plan-
ning; Motion and Trajectory Generation.

I. INTRODUCTION

Automated vehicles face several challenges when planning
their actions in an uncertain and partially known environ-
ment. Creating optimal and feasible paths in those scenarios
in a reduced runtime is a difficult problem. A planner adapted
to a cluster of scenarios and integrated in a hierarchical
planning system with other modules is a viable solution.

We focus on combinatorial search methods for real-time
planning and control state sampling by using precomputed
motion primitives.

The state of the art is divided into two subsections, where
the motion primitives I-A correspond to the offline phase and
the search methodologies I-B to the real-time phase in our
approach.

A. Motion Primitives

A grid-based approach overlays a network of ”points” on
the state/control space continuum. At each grid point, the ve-
hicle can move to neighbour points if the path between them
is enclosed by CFree, collision-free space. Some examples of
this approach are a simple N-order grid, Barroque Latombe
motion primi- tives [1] and Mihail Piv- toraiko Lattices [2].
As a result of the discretization of the state space, one
can only assure resolution completeness. On the other hand,
the quality of the path sets generated is high, since the
computation of the trajectories is made offline, which allows
the solution of a boundary value problem (BVP) by using
numerical methods, when there is no closed form solution
and the state space is sampled instead of the control space.
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João Salvado and Luı́s M.M. Custódio are with Institute for Systems
and Robotics (ISR/IST), LARSyS, Instituto Superior Técnico, Univ Lisboa,
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Even when it is not necessary to solve a BVP, offline control
space sampling can have a positive effect on guiding the
search by careful selection of samples, as described in [3].

Since an increase in the number of the motion primitives
increases the number of expansions during the online phase,
several strategies were developed in order to reduce motion
primitives by following certain selection criteria. Some of
the metrics used during the sampling of the state space
are discrepancy, dispersion or diversity [3], [4]. There are
deterministic approaches exclusive to grid-based methods,
e.g. Primitive Set Decomposition [5], which prunes newly
created trajectories by accessing previous lattices and com-
paring them within a certain adjustable boundary factor.

B. Search Methodologies

The work in [6] presents an overview of several combina-
torial methods going from the fundamentals with the classic
A* [7] to more recent approaches. For example, D*Lite is
an A* alike method, which allows replanning cycles. ARA*
gives anytime characteristics to the planner [8]. LPA* is able
to repair the search tree with a changing environment [9].
Finally AD* combines the anytime characteristics of ARA*
and the repairing features of the LPA* algorithm.

Anytime search is a pragmatic approach for trading solu-
tion cost and planning time. It can also be used for solving
problems within a time bound. Three frameworks for con-
structing anytime algorithms in a bounded suboptimal search
have been proposed: continuing search, repairing search and
restarting search [10]. Continuing is a bounded suboptimal
search, which after encountering a solution, continues by
iterating the process, allowing ever improving solutions. The
OPEN list is maintained in each cycle. This approach was
initiated in [11]. Repairing searches have a different manner
of handling duplicate states by creating three lists (OPEN,
CLOSED and ICONS), where all inconsistent nodes are
stacked, rather than immediately expanded, until the next
iteration of the repairing cycle. This method is valuable
in situations where an agent finds a solution initially and
while moving to the goal perceives a changed environment,
because only the part of the graph where the environment
changed is repaired, as [12] describes. A second difference
is related to the fact that in each cycle the search starts from
the initial node instead of a node with the lower evaluation
function value in the OPEN list. Restarting search is similar
to continuing search. A suboptimal bound is tightened in
each iteration, allowing the improvement of the solution in
each cycle. The main difference is that the search restarts
from the initial node. This approach eliminates the low-h-
bias in the initial phase of the search. Since the effect of the
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inflated part of the heuristic is bigger at lower depths, final
states would have lower evaluation function values, which
would be responsible for having similar solutions in the
following anytime cycles. To overcome the low-h-bias the
cost of each node in the OPEN list is recomputed considering
the true cost to the goal from the previous iteration, as
reported in [13].

Concerning heuristics, several methods allow the usage of
nonadmissible heuristics with an anchor admissible heuristic.
Such a combination might allow the maintenance of the
anchor heuristic properties, e.g. the work developed in [14],
where the heuristic is the minimum between the anchor
admissible and the nonadmissible heuristic (pathmax strat-
egy). A multi-heuristic search with uncalibrated heuristics
was created in [15], where several OPEN lists are utilised,
each one with an uncalibrated heuristic, and one of the
OPEN lists has an anchor heuristic to assure admissibility.
With this strategy, several heuristics could be generated for
different situations, which will make the overall planner more
adaptable to the environment features.

Motivated by these recent developments, a new contin-
gency planner is proposed in this paper. A variety of possible
methods for control space sampling and search methodolo-
gies could be applied and tuned for emergency scenarios.
This work evaluates a set of strategies for its applicability
to the specific problem of finding a solution in a 0.1[s] time
frame.

The article is organized as follows: first the problem
statement is introduced in section II, this is followed by
the approach in section III, in section IV experiments
and simulation results are shown and discussed, finally in
section V conclusions are presented, contributions are listed
and suggestions for future work are given.

II. PROBLEM STATEMENT

The goal is to implement a contingency planner for an
emergency situation, which finds a feasible and safe maneu-
ver in a 0.1[s] time frame. In order to accomplish such a
goal the planner was divided into two phases.

In the offline phase, a set of motion primitives are gen-
erated, pursuing a nonlinear system model, bounded by
physical constraints, which takes the burden of feasibility
verification from the online phase, where time has a higher
cost.

The online/real-time phase is the search phase, in which a
graph of maneuver segments is constructed taking advantage
of the precomputed motion primitives created in the offline
phase. During this phase, collision tests with moving obsta-
cles and road boundaries are conducted.

Fig. 1 describes how the contingency planner fits in the
scope of the complete DLR planner. Here, the route planner
lies on the spectrum of long-range and low-fidelity planning
and the trajectory tracking planner focuses on short-range
and high-fidelity.

In this work, we present a new grouping and organiza-
tion scheme for outgoing edges, with a combination of an

Fig. 1. Hierarchical Planner of the overall project, contemplating several
modules/planners and its iterations

obstacle-sensitive heuristic, while maintaining completeness
and sub-optimality properties. The new scheme allows reduc-
ing runtime for collision detection and heuristic computation
due to the descendant nodes grouping. A control space
sampling scheme is constructed and tuned for emergency
maneuver planning.

III. APPROACH

A. Motion Primitives for an Automated Vehicle in an Emer-
gency Situation

A initial value problem is solved by sampling the control
space, initial condition, and solving the ordinary differential
equations afterwards. The control space IR2 was discretized
as a two-dimensional grid with lateral acceleration and
longitudinal velocity and was constrained by physical bound-
aries, which are maximum and minimum velocity, lateral
acceleration and curvature. A time interval constraint is also
applied. The grid with the constraints previously depicted
will be referred to as as constraint graph for simplicity’s
sake.

Emergency situations are characterized by having a high
collision risk. A special set of motion primitives was de-
signed with the following assumptions.

ax = sign(vx1− vx0)
√

g2−max(|ay0|, |ay1|)2 (1)

∆t =
vx1− vx0

ax
(2)

day

dt
=

ay1−ay0
∆t

(3)

ay
2 +
(vx1− vx0

∆t

)2
≤ g2 : 0.5≤ ∆t ≤ 2.5[s] (4)

The longitudinal acceleration (braking) ax is defined accord-
ing to the chosen lateral acceleration and the friction circle
constraint, in equation 1, where g is the gravitational con-
stant. The sets of velocity and lateral acceleration (vx0,ay0)
(vx1,ay1) represent the initial and final state, respectively. By
having a constant ax, the trajectory time ∆t is computed as
in equation 2. The lateral acceleration derivative is assigned
as constant, in equation 3. Finally, trajectories created last
between 0.5 and 2.5 seconds, in equation 4. The creation of
the motions primitives requires a tuning of the trajectories
duration. The time frame chosen yields an acceptable balance
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between precise maneuvering with short trajectories and
depth first search exploration using long trajectories. The aim
behind the assumptions is to utilize the remaining potential
of the friction circle, after the desired lateral acceleration has
been chosen, while maximizing braking.

We consider a model for the vehicle motion defined by
the following ordinary differential equations

ẋ = vx cos(θ)
ẏ = vx sin(θ)

θ̇ = ayv−1
x (5)

v̇x = ax = u1

ȧy = u2

This formulation specifies the system state as
(x,y,θ ,vx,ay), with (x,y) the vehicle position in euclidean
coordinates and θ the vehicle heading. The control inputs
are (ax, ȧy).

The reference system x-y is centered on the car gravita-
tional center. The vehicle x-axis is assumed to be parallel to
the trajectory. The conjunction of the assumptions depicted
in equations 1-4 and ODE’s in 5 allows the construction of
motion primitives, which can be seen in figure 2.

Furthermore, one has to consider that a higher resolution
of the constraint graph means a geometric increase in motion
primitives. This fact generates two major issues. Firstly,
the data file of motion primitives can quickly reach a size
that is not acceptable. And secondly the search branching
factor also increases. To overcome this, an empirical pruning
strategy was utilized, where instead of creating all the tra-
jectories that have an end state inside the bounding ellipses,
defined in the equation 4, only trajectories within a grid cell
distance from the bounding ellipses are utilized. Figure 2
represents the constraint graph with the pruning strategy and
the respective trajectories is depicted in figure 2.

Fig. 2. Constraint graph delimited by curvature, longitudinal velocity
and lateral acceleration constraints, in red. Bounding ellipses computed by
equation 4, in green. All possible trajectories having an initial maximum
velocity and zero lateral acceleration are shown in blue, such group is
assigned as trajectory superset. In light gray are represented all motion
primitives.

An important step in our approach is the creation of a
hierarchical structure of motion primitives. For each discrete
vehicle state in the vx-ay grid, the available (outgoing) motion
primitives are grouped into k = 3 sets, according to their final
lateral acceleration, see figure 3. The clustering of motion
primitives allows to speed up collision detection and the
computation of the obstacle-sensitive heuristic by set-based
precomputations. In the evaluation of each individual motion
primitve, only those objects are considered, which intersect
the convex hull of its motion primitive set.

Colliding Points

Fig. 3. Simplified representation of the division of trajectories into a
hierarchical structure such that a group of trajectories belong to a trajectory
set (three arc sections in grey) and the group of trajectory sets is a trajectory
super set (arc section in light blue). The trajectories are represented in blue.

B. Continuing Anytime Search for an Automated Vehicle in
Urban Traffic

A search problem can be defined formally by initial state,
nodes and edges configuration, transition model, goal test and
path cost [16]. The initial state/root-node is in the configura-
tion (x = 0,y = 0,θ ,vx,ay, t = 0). The pre-computed motion
primitives depicted in subsection III-A correspond to the
edges in the real time search. The transition model employs
the ODE’s in (5). The goal node is (x,y,θ ,vx = 0,ay, t) when
the vehicle is stationary. A solution trajectory is composed of
the motion primitives leading from the root of the tree, which
is the current vehicle state, to a goal node. Nodes/states have
a six-dimensional representation (x,y,θ ,vx,ay, t). The path
cost is the total duration of the trajectories.

Since we intend to find a solution in a 0.1[s] time frame,
the core algorithm here proposed is an epsilon-bounded
anytime search and the approach followed is a continuing
anytime search, as reported in [10]. Anytime methods find
sub-optimally bounded solutions fast and allow ever improv-
ing solutions until time runs out [8].

Node cost c(s) is defined as the total trajectory time
∆tincoming trajectory in equation (6), since it is commonly ac-
cepted that a faster-braking vehicle has its damages mini-
mized, in case a collision happens. The true cost of going
from the initial state/node to the final state/node s is rep-
resented as g(s), in equation (7). For the anchor heuristic
h(s), an admissible heuristic was constructed, being the
time required to come to a standstill state when applying
maximum longitudinal acceleration, in equation (8). Since
amax is assigned to be equal to 9.81 [m/s2] the cost to the
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goal is always underestimated, which allows the maintenance
of the heuristic admissibility properties.

c(s) = ∆tincoming trajectory (6)
g(s) = c(s)+g(parent) (7)

h(s) =
vx

amax
(8)

funinflated(s) = g(s)+h(s) (9)
finflated(s) = g(s)+ ε ·h(s) (10)

We also compute an inflated and uninflated evaluation
function ( finflated(s), funinflated(s)) in equations (9) and (10),
for the adaptative strategy that is responsible for recomputing
the ε value.

The anchor heuristic does not have any information about
the environment, so an environment-sensitive heuristic was
created. Note that the inflated evaluation function has an
uninflated and inflated part, as equation (11) shows:

finflated(s) = g(s)+(ε +1−1)h(s)
≡ finflated(s) = funinflated(s)+(ε−1)h(s) (11)
≡ finflated(s) = funinflated(s)+ I(ε,s)

I(ε,s) = α(ε−1)h(s) : α ∈ [0,1] (12)

where I is a function of ε and s that computes the inflated
part of the evaluation function.

We intend to tune the inflated part by multiplying it by a
factor α , in equation (12). Considering that α is between
zero and one, the true cost to the goal is always being
underestimated, allowing the maintenance of a sub-optimally
bounded solution and completeness properties. Such tuning
can be seen the in figure 4.

g + h

α (ε-1) h

(ε -1) h

Fig. 4. Representation of the utilization of the inflated part by changing
α parameter

The strategy of expanding versus reducing the inflated
part I is a framework for a wide range of situations that
could be specialized for a cluster of scenarios by computing
a suitable α factor. For emergency situations the α factor
can be computed as follows:

αst=i =
maxst∈St (dost )−doi

maxst∈St (dost )
: o ∈ O (13)

where doi is the average distance between the center of all
obstacles o ∈ O and the center of a trajectory set i ∈St . O
is the universe of all the objects detected by the ego vehicle
and St the group of all trajectory sets in a trajectory super
set, of which in this implementation there are three.

As a result, trajectories inside each trajectory set have the
same inflated part. Nevertheless, each trajectory has a unique
uninflated part. It is therefore possible to distinguish clusters
of trajectories (trajectory sets) by tuning the inflated part
of the evaluation function, which allows a prioritization of
trajectory sets that are far from the obstacles.

When a solution is found a new anytime cycle starts,
where the ε bound is updated following the work in [8],
adapted to a continuing anytime search, in equation (14).
Afterwards, nodes in the Open list are reordered considering
the recomputed evaluation function values.

εnew = min
s∈OPEN

(
εold ,

f̄
g(s)+h(s)

)
(14)

where f̄ represents the true cost of the solution found.
The overall contingency planner diagram is shown in

figure 5.

Fig. 5. Online Search Algoritm flow diagram

In the initialization phase, motion primitives are loaded
from a data file and the environment is sensed. Afterwards a
prepare search step occurs, where a root node is initialized
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with the current vehicle state, vx and ay rounded to the
nearest grid-point. During the exploration step a hierarchical
collision test strategy is implemented. The expansion step is
responsible for the combinatorial accessment of each node
following equations (6-13). When the search reaches a goal
node, an anytime cycle starts, the ε bound is updated as in
equation 14 and the OPEN list is reordered.

IV. SIMULATIONS AND RESULTS
The integration of the motion primitives into the anytime

online search described in the previous sections allowed the
construction of two strategies that will be compared and
evaluated in this section. One is an anytime, sub-optimally
bounded search, with a trajectory clustering strategy, and
environment-sensitive heuristic, SHA∗ - Sensitive Heuristic
A*. The other is an anytime, sub optimally bounded, standard
search, AWA*- Anytime Weighted A*. In order to conduct
the experiments the ”DLR Automotive Motion Planner” was
utilized.

The strategy SHA∗ has a heuristic that requires a higher
computation time per node, nevertheless we expect a better
informed search. As a result, we intended to create tests
and evaluate the results such that one could answer if one
effect compensates the other and what are the advantages
and disadvantages of each method. A couple of test scenarios
is depicted in figure 6 and a discussion of the results will
follow.

(a) Scenario 1 (b) Scenario 2

Fig. 6. Scenario 1 contemplating a stationary obstacle vehicle in red and
the ego vehicle with a velocity of 25 (m/s). Following the work of [17]
and [18] the risk of collision in this scenario is 97%. Scenario 2 another
stationary vehicle is added to the right lane.

In table I the results for both methods and scenarios can
be consulted.

TABLE I
RESULTS FOR BOTH SCENARIOS AND SEARCH METHODS

Senario 1 Senario 2
AWA* SHA* AWA* SHA*

Solution 1st Last 1st Last 1st Last 1st Last
Time [ms] 18 21 3 23 31 51 3 36
# Invalid

Nodes 179 240 3 77 599 755 3 222

Memory 42 61 563 723 58 108 387 548
Epsilon
Value 4 1.22 4 1.10 4 1.43 4 1.20

The results show a major improvement in runtime when
comparing the first solution of both methods in the two

scenarios. The approximation of the final solution is similar,
which is expected, since both methods converge to an A∗ by
reducing the ε value to almost unity. N.B. the aim of the
planner is to find a solution as soon as possible.

Concerning invalid explorations, the superiority of the
SHA∗ method is straightforward, with the number of invalid
explorations being smaller in both the first and final solution
found. In fact since the SHA∗is environment-sensitive, one
expects fewer invalid explorations to be made. In scenario 2
the difference increases since both central and right trajectory
set is highly penalized, which allows a prioritization of the
left lane trajectory set.

The number of expanded nodes which stay in memory, in
the SHA∗ strategy, is an order of magnitude bigger than in the
standard AWA* method. Looking at the time interval until a
solution is found, it is possible to conclude that expansions
don’t have a major role in that respect. The elevated number
of nodes in memory can also be explained by the fact that
with a SHA∗ strategy more jumps between sets are expected,
and even though a trajectory superset is divided into three
trajectory sets, all of the nodes inside a trajectory set are
expanded.

An important characteristic of both methods is the conver-
gence of the epsilon value. The final value of ε in the SHA∗

method is closer to unity than in the AWA*, which means
that SHA∗ has a better convergence to A∗. N.b. the initial
epsilon value was chosen to be 4. Since the final solution
was found in a time lower than 0.1[s] this means the search
stopped in both cases because it found a resolution-optimal
solution. Graph trees for both scenarios and methods are
presented in figure 7.

Fig. 7. Graph trees generated in the first solution found for both scenarios
and methods

Note that a grouping of trajectories into trajectory sets is
also responsible for a reduction in the collision tests runtime.
In fact, we compute a preliminary collision test where a circle
segment geometry enclosing a trajectory set is tested against
moving obstacles and road boundaries.

We conclude that SHA∗ is better in terms of runtime
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for the first solution and reduced number of invalid
explorations. Nevertheless, it has a higher memory burden.
So, one could agree that computing a computationally
complex environment-sensitive heuristic allows a better
informed search.

V. CONCLUSIONS AND OUTLOOK

The proposed contingency planner with an anytime sub-
optimally bounded search using a triple set organization
and an environment-informed heuristic with the help of
the precomputed motion primitives can generate reasonable
and fast solutions for the tested scenarios, improving upon
existing anytime methods. It also fulfils the project objective
of finding a solution in a time frame of 0.1 [s], furthermore
finding a resolution-optimal solution.

The major achievements of the contingency planner de-
veloped are the following:

• The creation of an anytime search informed heuris-
tic with environment information, which maintains
bounded suboptimality and resolution completeness
properties.

• The construction of a more computationally complex
heuristic, which, although more computationally expen-
sive, leads to an overall decreased computation time,
due to its tendency to explore free space.

• The construction of motion primitives that are suited
for the emergency situations in the tested scenarios and
that are not a burden in terms of memory to the online
search.

Concerning the combinatorial accessment, a new
formulation of the parameter α could be utilized for a
different cluster of scenarios. It would be interesting to
evaluate whether an increased number of samples would
accelerate the search and at which point the computation
of the inflated part does not compensate a reduction in the
number of invalid explorations and runtime. Furthermore,
it would be interesting to evaluate, how the increased
computational load of the obstacle sensitive heuristic
balances against a decreased runtime resulting from the
reduction of invalid explorations, when the branching factor
is increased.
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