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Traditionally robots have been preprogrammed to execute specific tasks. This
approach works well in industrial settings where robots have to execute highly
accurate movements, such as when welding. However, preprogramming a robot is
also expensive, error prone and time consuming due to the fact that every features
of the task has to be considered. In some cases, where a robot has to execute
complex tasks such as playing the ball-in-a-cup game, preprogramming it might
even be impossible due to unknown features of the task. With all this in mind,
this thesis examines the possibility of combining a modern learning framework,
known as Learning from Demonstrations (LfD), to first teach a robot how to
play the ball-in-a-cup game by demonstrating the movement for the robot, and
then have the robot to improve this skill by itself with subsequent Reinforcement
Learning (RL). The skill the robot has to learn is demonstrated with kinesthetic
teaching, modelled as a dynamic movement primitive, and subsequently improved
with the RL algorithm Policy Learning by Weighted Exploration with the Returns.
Experiments performed on the industrial robot KUKA LWR4+ showed that robots
are capable of successfully learning a complex skill such as playing the ball-in-a-cup
game.

Keywords: Learning from Demonstrations, Dynamic Movement Primitives, Re-
inforcement Learning
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Traditionellt sett har robotar blivit förprogrammerade för att utföra specifika upp-
gifter. Detta tillvägagångssätt fungerar bra i industriella miljöer var robotar måste
utföra mycket noggranna rörelser, som att svetsa. Förprogrammering av robotar är
dock dyrt, felbenäget och tidskrävande eftersom varje aspekt av uppgiften måste
beaktas. Dessa nackdelar kan till och med göra det omöjligt att förprogrammera
en robot att utföra komplexa uppgifter som att spela bollen-i-koppen spelet. Med
allt detta i åtanke undersöker den här avhandlingen möjligheten att kombinera ett
modernt ramverktyg, kallat inläraning av demonstrationer, för att lära en robot
hur bollen-i-koppen-spelet ska spelas genom att demonstrera uppgiften för den
och sedan ha roboten att själv förbättra sin inlärda uppgift genom att använda
förstärkande inlärning. Uppgiften som roboten måste lära sig är demonstrerad
med kinestetisk undervisning, modellerad som dynamiska rörelseprimitiver, och
senare förbättrad med den förstärkande inlärningsalgoritmen Policy Learning by
Weighted Exploration with the Returns. Experiment utförda på den industriella
KUKA LWR4+ roboten visade att robotar är kapabla att framgångsrikt lära sig
spela bollen-i-koppen spelet.

Nyckelord: inlära av demonstrationer, dynamiska rörelseprimitiver, förstärkande
inlärning
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1 Introduction
Robots are used in human environments today more than ever before. Examples
of such robots are simple vacuum cleaning or lawn cutting robots. Albeit robots
becoming more popular, they are still mainly used in industrial settings as welders,
assemblers and much more. The reason why robots are excelling in industrial settings
is because the environment is for the most part static and that the task at hand
is known a priori. Because of this, the robot can be preprogrammed to precisely
follow specific trajectories. However, in an constantly changing environment, as in
our homes, or with complex tasks, as playing ping pong [61], the robot cannot be
preprogrammed as before. Thus, for a robot to learn in these situations, one possible
and frequently used solution is to learn from a human demonstrator.

The concept of having a human to teach the robot by interacting with it is known as
Learning from Demonstration (LfD), as well as Programming by Demonstration (PbD)
or imitation learning. LfD has enabled robots to acquire complex tasks such as
playing the ball-in-a-cup game [50], playing ping pong [61] and much more [10, 63].
For the robots to acquire a movement, they first and foremost have to record the
demonstrated movement either by their internal sensors or by an external monitoring
system. Then the responsibility is shifted over to the robot, which in turn is expected
to learn a reasonable representation of the movement from the recorded information.
The learning is fulfilled with the guidance of a learning algorithm. However, as the
reproduced movement by the robot can face perturbations, the learning algorithm
has to be able to produce such a representation of the movement that perturbations
can be handled without risking failure.

LfD has attracted significant attention in the last couple of years where the number
of papers written in the subject is a significant indicator [5, 60, 64]. There are several
reasons behind the increased interest [3, 53]. The first reason is the reduced learning
time compared to traditional approaches where a human had to program the robot
off line. The second reason is that by demonstrating the movement to the robot, the
user can also predict the behaviour in advance when the robot executes the learned
skill as this should follow the demonstrated movement quite accurately. This, in turn,
increases safety and is exceptionally important when integrating robots in human
environments. Finally, the acquired movement is in line with human workspace and
thus critical parts of the movement can be modelled very accurately.

Albeit all the positive sides of learning from demonstrations, problems as: im-
proving and generalizing the learned skill still remains. The former of these problems
originates from the basic idea of learning from a demonstration is not enough to
master complex tasks as flipping a pancake [52] or playing the ball-in-a-cup game [50].
Hence, to really master a learned skill subsequent practise is needed. The method of
practising as to improve the skill has already been implemented in robotics and is
known as Reinforcement Learning (RL), where the robot tries to improve the learned
movement by interacting with the environment and receiving some responses in form
of rewards [48]. Based on these rewards, the learned movement will be adapted as to
increase future rewards. This resembles how humans acquire a new skill: first we
imitate it from another person and then we subsequently practice the skill where the
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underlying idea is to fine-tune the movement until we can master it.
Although reinforcement learning nowadays is the standard approach to improve

a taught skill, one problem still remains and that is how to safely explore new
trajectories. To explore new trajectories, noise is added to the learned representation
of the skill, resulting in a slightly new trajectory. However, generating the noise
is not a trivial task and problems as: the magnitude of the generated noise and if
it should be correlated or not is still an open question. For example in [50] and
[49] the generated noise is dependent on the learned model. Intuitively this makes
sense; however, it does not take into consideration the constraints of the executing
system, which in both cases is a robotic arm. Recent studies [44], on the other hand,
concentrates on generating noise which focuses on the constraints of the actual system.
However, this has not yet been applied to improving a learned model represented as
a Dynamic Movement Primitives (DMP). Hence, this thesis will study how to safely
explore new trajectories for a skill modelled as a DMP? To answer this question the
following objectives are to be achieved:

• the skill has to be modelled as a dynamic movement primitive,

• an RL algorithm for improving the modelled skill has to be selected,

• the exploration has to be safe.

To test how well the new approach of generating safe trajectories works, a
challenging enough real world experiment is needed. One experiment which can be
seen as a benchmark problem in robotics is the ball-in-a-cup game [50]. The game
consist of a ball attached to a string which in turn is attached to the bottom of a
cup. The objective of the game is to get the ball into the cup. This is achieved by
inducing a movement on the ball by quickly moving the cup back and forth and then
pulling it up and moving the cup under the ball. The game is simple by its nature
but not that easy to learn as it requires a fast and precise movement, where even
small changes of the movement can have a drastic impact on the trajectory of the
ball. The experiment is of interest as a robot cannot get the ball into the cup by
merely executing the movement produced by the initially learned model, and thus
subsequent RL is needed to successfully master the skill.

This thesis is organized as follows: the second chapter introduces and compares
several state-of-the-art LfD approaches. Based on the results, DMP is chosen to
model movements. Chapter 3, in turn, is devoted to explaining DMP in more detail.
As reinforcement learning is used to improve the learned movement, Chapter 4 is
dedicated to explaining this. First the basics behind RL are explained, and later the
state-of-the-art algorithms are introduced. In Chapter 5 the testbed is introduced.
This consist of both the hardware and the already implemented and newly developed
software supporting the experimental part in this thesis. The experiments and results
are presented in Chapter 6. These are also critically discussed in the same chapter.
Conclusions and ideas for future work are presented in Chapter 7.



3

2 Learning from Demonstrations
For a robot to perform a task, the traditional approach has been direct programming,
where the desired position of the robot is manually specified by the user [54]. This,
however, is time consuming, error prone and requires full knowledge of the task,
forcing the programmer to be an expert in the field. Moreover, it is also not possible
to scale or reuse the program to new tasks. Therefore, to remedy these shortcomings
the LfD framework has been developed. This framework allows a robot to acquire new
skills in a simple and fast manner by transferring it from a human to a robot through
demonstrations. Hence, as the input data to the robot is labelled, for example data
points of the demonstrated trajectory, the learning belongs to the supervised learning
class of machine learning [5]. In supervised learning the problem is learning the
input-output mappings from the provided data [76].

For acquiring the new skill, the problem can be split into two parts: a teaching
and a learning part [5]. The teaching part consists of methods for teaching the robot,
i.e. how to transfer the skill from a human to the robot. In the learning part, the
responsibility is on the robot to learn a representation of the movement based on the
demonstration.

This chapter is devoted to explaining both the learning and teaching parts. As
the robot acquire a new skill by first having it demonstrated and then learning the
representation of the movement, teaching will be covered before learning in this
chapter.

2.1 Methods for Teaching a Skill
Teaching a robot a new skill deals with the problem of how to transfer the skill from
a human demonstrator to a robot, or more exactly how to transfer the information
known by the teacher, for example the arm movement when flipping a pancake, to
the robot in a correct way. The problem with transferring information is finding a
mapping from the teacher to the learner, or vice versa. This problem is known as the
correspondence problem [64], which deals with the diversity in morphology between
the demonstrator and the imitator. To actually transfer a skill from a demonstrator
to a robot can be realized based on three different methods [54]: kinesthetic teaching,
teleoperation, and observational learning.

In kinesthetic teaching the demonstrator grabs the robot and moves it manually.
Unfortunately, for this to be possible the robot has to be both small and able to
compensate for its own weight through active control such as gravity-compensation
control [53]. Despite meeting all these requirements, kinestethic teaching still has
its shortcomings as the human demonstrator can have problems teaching a complex
movement to a robot consisting of multiple Degrees of Freedom (DoF) as this requires
moving several joints simultaneously. However, the advantages kinesthetic teaching
provides are that the demonstrator can effectively demonstrate the whole movement
or only a part of it. Moreover, the speed of the demonstration can easily be adjusted
by the demonstrator. Applications of kinesthetic teaching have been, for example,
wood planing [59], playing the ball-in-a-cup game [51] and flipping pancakes [49].
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In teleoperation, the teacher operates the robot at a distance by using a controller.
The controller can, for instance, be a joystick or a haptic device. Teleoperation
provides a simple mean of teaching the robot and the teacher is not bound to be
in contact with the robot. However, being too far from the robot to control is not
feasible either due to the time delay between commanding the robot until it receives
the command. This is of concern when controlling robots on planets other than Earth.
Other disadvantages are restrictions in sensing the limitations and possibilities of
the robot, performing fast movements, and controlling a robot consisting of multiple
DoF. Despite these limitations, teleoperation has been utilized in many applications
such as robotic kicking motions [14], flying a robotic helicopter [65], robotic assembly
tasks [24], and object grasping [74].

In contrast to the two previous methods, which forced the demonstrator to either
be in direct contact with the robot or teleoperating it directly, another teaching
method, observational teaching, which shadows a demonstrator, is also a possibility
[5]. To enable observational learning, data has to be externally collected from the
demonstrator, either by using sensors on the teacher or by external observations
through cameras. Benefits of using observational learning is that the demonstrator
uses his own body to show the movements, alleviating the problem of controlling a
complex robot. However, with observational learning the correspondence problem
is significant as the the demonstration needs to be mapped from the body of the
demonstrator to the joints of the robot. Moreover, the whole setup, in contrast to
the other teaching methods, is far more complicated as it requires either a motion
capture system, video cameras, or sensors directly attached to the demonstrator.
Despite the shortcomings, observational learning has resulted in applications such as
object manipulation [98].

As for now, three different methods for teaching a robot have been considered.
From the human demonstrations the robot receives data which will be used as input
for the learning part, where the robot will have to learn how to successfully reproduce
the taught demonstration on its own. This will be covered in the next section.

2.2 Methods for Learning A Skill
After the demonstrations have been conducted, the robot has to be able to transform
the provided data, represented as a set of state-action pairs, into a policy which can
be used by the robot to reproduce the demonstrated movement [5]. The learning can
be split into two categories [11]: symbolic learning and trajectory learning, where
their individual learning schemes are visualized in Figure 1. The former is used to
learn at a more abstract level, where a skill is composed of several primitive actions
represented as symbols. In the latter, the movement is learned at a low level and is
represented as a trajectory. Next the symbolic learning will be introduced, and later
the focus will be shifted towards trajectory learning.
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Figure 1: The skill can either be represnted at a symbolic level (upper figure) or at a
trajectory level (lower figure). The fundamental difference is that at a symbolic level
pre-defined actions are extracted, while on a trajectory level the motion is projected
on a latent space. (Source: [11]).

2.2.1 Symbolic Learning of Skills

In symbolic learning the actions are represented as symbols. Thus, to learn a task,
one possibility is to segment it and then encode it as a sequence of predefined symbols.
In [28] actions are represented in a hierarchical manner, and learning is based on
extracting symbolic rules for handling objects. An example of this is setting up a
table, where the soup plate has to be on top of the main dish plate; thus, the order of
placing objects becomes important. The resulting system consists of several building
blocks depicted in Figure 2.

To encode a skill into a set of symbolic rules, the first thing is to demonstrate the
task at hand. Thus, the first building block, named Demonstrations, provides one
or several demonstrations of the task to the system. From the demonstrated tasks,
the second building block, Segmentation, is responsible for composing the actions as
primitives and mapping them to individual states. A state can be seen as the impact
an action has on the current world state, e.g. “the main dish plate was set 10 cm
below the glass”. As several of these states correlates, the State Generation block
search for states representing similar subtasks. Then in the Task Generalization
block, the task is generalized by determining in what order the states have to occur,
and if some states can be removed due to their direct impact on the final result is
neglectable. One example of a symbolic rule is that a dishwasher has to be opened
before filling it. As the constraints are extracted from the demonstrations, more
demonstrations lead to more constraints, depicted in Figure 3. With both the task
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space and task restrictions in mind, the robot should create a plan to reach the goal
state without violating the predefined rules, which is done in the Planning block. The
plan should tell which object to move and where to move it as to fulfil the task. This
plan is later executed in the Execution block. This step is in charge of grasping the
object and manipulating it; thus, it is connected to the Grasp Planning and Visual
Servoing block. The Perception block, which is connected to several other blocks, is
of importance as it is used for pose estimations of the object, where the gathered
information is especially utilized in the planning phase. The sensory perception and
modelling, used for pose estimation, is usually very difficult and can be seen as the
bottleneck of the system, affecting how complicated tasks the robot can perform [28].

All in all, symbolic learning is effective at learning high-level tasks such as setting
up a table and placing boxes [28]. However, to effectively learn a skill a lot of prior
knowledge is needed to avoid unnecessary encoding of conditions. This, on the other
hand, is time consuming as knowledge is gathered from demonstrations and several
demonstrations are needed to provide enough knowledge. In contrast to symbolic
learning, there also exist another learning method called trajectory learning which
learns, as the name suggests, the skill on a trajectory level. This learning method is
introduced in the next section.

Figure 2: A symbolic learning flowchart. (Source: [28]).
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Figure 3: From Demonstrations (1 and 2) several constraints can be generated and
state F can be neglected. (Source: [28]).

2.2.2 Trajectory Learning of Skills

From the symbolic learning, a high level policy could be derived. In contrast to
this, trajectory learning seeks to find a policy able to reproduce the low level of the
taught movement, such as joint positions, motor commands, or Cartesian position of
the end effector. Traditionally the encoding of a motion has been direct by using
splines and Bézier curves [36] [97]. However, this approach of learning a skill on
trajectory level is limited to only learning the position over time and excludes other
potentials variables, such as velocity and acceleration, from the task space. More
recent research focuses on representing the motion as a statistical model or by a
dynamical system [11]. Moreover, promising studies [17, 37, 56, 62, 84] point toward
encompassing the dynamics of a human movement into the actual encoding of the
trajectory.

Statistical modelling of skills

The idea behind exploiting statistical learning for learning a model of the taught skill
is to cope with the high variability originating from the demonstrations [11]. The
foundation block in statical learning is a mathematical concept known as regression.
Regression analysis seeks to estimate the relationship between the input and output
data. For trajectory learning the input are robot states and the output are robot
actions [5]. In the following sections several well known regression methods, used to
encode trajectories for a robot, are presented.

Locally weighted learning

Locally Weighted Learning (LWL) refers to a family of non-parametric regression
methods [6]. For fulfilling the regression and subsequently obtaining the output,
LWL only concentrates on data points which are close (based on some metric) to the
input value, hence the prefix “local”. This is visualized in Figure 4.

In the LWL family, two algorithms exist: Locally Weighted Regression (LWR) and
Locally Weighted Projection Regression (LWPR) [25]. The main difference between
these two are that the former method, LWR, is memory based, whereas the latter
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is not. Memory based means that before the regression can take place all the data
points have to be stored. Thus, the computational complexity is high, more exactly it
is O(n2). Therefore, to lower the computational complexity, LWR has been extended
to deal with incremental regression, making it non-memory based. The extension
resulted in the LWPR algorithm with a linear computational complexity of O(n),
which is much lower in comparison to the LWR algorithm. Thus, if the input data
(number of samples) is high LWPR should be used, otherwise LWR suffices.

Figure 4: In LWL, all data points are weighted with a kernel according to their
closeness to the current value of interest, given here as x. (Source: [25]).

Gaussian process regression

A Gaussian Process (GP) is defined as a set of random variables, where any finite
set of this random variables is itself a joint Gaussian distribution [76]. Thus, a GP is
made up of a mean and a covariance function, where the input-output mapping is
learned with Gaussian Process Regression (GPR) (See Figure 5). The advantages
with GPR is that there are less open parameters to tune in comparison to other
regression methods such as LWPR and Gaussian Mixture Regression (GMR).

On the other hand, GPR requires inverting the covariance matrix resulting in
a computational complexity of O(n3), where n is the number of input points. This
computational complexity is much higher in comparison to both LWR and LWPR,
making it useless for online learning. Because of this fact, effort has been invested
into reducing the computational complexity for a GPR, and two main solutions have
been proposed in [66] and [70].
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Figure 5: This figure shows the learned continues mean function (solid line) and
variance function (gray area) in a GP given the input data (crosses). The learning is
fulfilled with GPR. (Source: [76]).

In [66] the computational complexity of the GP is reduced by introducing similar
approximations as in LWL effectively reducing the usage of data points. This
reduction of data points resulted in what is know as the Local Gaussian process (LGP)
which performs faster than the original GPR. Although the reduction in data point
usage, the results showed that accuracy of the regression was similar for LGP and
GPR.

Another approach for speeding up the GPR is presented in [70]. This approach
utilizes sparse approximation techniques, where the number of data points are reduced
by discarding all points which are not considered salient according to a specific metric.
In their approach they use the Leave One Out Cross Validation (LOOCV) algorithm
to discard all non-salient points which, in combination with regression, resulted in
the Localized Sparse Online Gaussian Process (LSOGP).

Gaussian mixture regression

To use GMR for encoding a trajectory as a statistical model, some initial steps needs
to be fulfilled. All the steps are depicted in Figure 6, where it is clearly seen that
GMR is only used as the final step. In the first steps, the data obtained from one or
several demonstrations is encoded as a statistical model, either as a Hidden Markov
Model (HMM) or a Gaussian Mixture Model (GMM) [22]. To retain any reliable
information from the statistical models they also have to be trained. Once this is
fulfilled, the statistical model, together with the input query, acts as the input to
the GMR which produces a sought output to the given input. For example the input
query could be a Cartesian position and the output from the GMR could be the
needed joint torques to move the end effector of the robotic arm to the specific input
position.
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Figure 6: To encode a trajectory with GMR it is required to do some preprocessing
steps, and either encode the initial data as a HMM or a GMM. (Source: [87]).

A GMM consists of several Gaussian distributions, each with their own mean and
covariance matrix [25]. This model is applied when the data set consists of several
clusters, where one Gaussian distribution per cluster is needed to model the data set
in a correct way (see Figure 7). In this thesis, the data set consists of a trajectory,
hence each Gaussian models a part of that trajectory. To initialize a GMM, each
Gaussian in the mixture is assigned an individual mean and covariance matrix as
well as a prior which describes the initial likelihood of one Gaussian w.r.t. the others
in the mixture.

Figure 7: The predicted output ŷ is produced as a weighted mixture of the Gaussians
g1, g2 and g3. The Gaussians should completely model the density of the input data.
(Source: [25]).

As can be seen in Figure 6, there is a temporal alignment step before the actual
encoding of the GMM. This is a consequence of the fact that GMM also encodes
the temporal information as any any other variable, and as demonstrations most
probably vary in time, they need to be temporally normalized to minimize the
variance between all demonstrations [23]. Otherwise, using only the raw data, the
resulting model would be inaccurate due to a high variance (see Figure 8). Aligning
the demonstrations is realized by using an algorithm known as Dynamic Time
Warping (DTW) [60]. This algorithm takes all the data samples of the trajectories
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and aligns them in a pairwise fashion as to minimize the distance between them
according to some metrics. To align them, as to achieve an optimal solution, Dynamic
Programming (DP) has been utilized [9]. An example of the whole process from
aligning different demonstrations with the DTW algorithm, to encoding the data as
a GMM, to extracting the wanted output through a GMR is presented in [19]. Their
approach, called Time-dependent Gaussian Mixture Regression (TDGMR), resulted
in a learning algorithm able to generalize from already known manipulation tasks to
new ones.

Figure 8: The left image depicts the GMM without DTW, whereas the right with
DTW. The mean and covariance of the learned trajectory is depicted, respectively,
as the green line and the ellipses. (Source: [60]).

Another possibility to using GMM in the GMR, is to use a HMM. A HMM
consists of several distinct hidden states which all are responsible for generating
the observation [75]. Moreover, the hidden variables satisfy the Markov property,
meaning that future state is independent of the past states as long as the current
state is known [31]. In our case, the states in the HMM are modelled as Gaussian
distributions with their individual mean vector and covariance matrix. As the HMM
usually consists of several coupled states, the transition from one state to another
is modelled as a transition probability. In contrast to GMM, time itself is encoded
as the probability to transition from one state to another, and thus the temporal
alignment is usually embedded inside the actual encoding of the HMM [101].

By only assigning a number of Gaussians to the data set in hope to efficiently
cover it is not enough, hence post training is necessary. To post train a GMM, the
Expectation-Maximization (EM) algorithm is usually used [60]. Unfortunately the
EM algorithm is not applicable for post trainig an HMM, but instead the Baum-Welch
algorithm, which is a specific EM algorithm, is used [20]. Both algorithms, however,
iteratively adapts the means and covariance matrices of the Gaussian distributions
in order for them to effectively model the data points.

As the number of states in the HMM and number of Gaussians in the GMM is a
free parameter, it is up to the user to manually choose the number he thinks will
cover the data set in the best way. However, this is not a trivial task, where too many
Gaussians will result in an over fitted model and too few Gaussians in an under fitted
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model [18]. Hence, finding models which are neither substantially over nor under
fitted is of great interest. To find potential candidates for the best model, a criterion
known as Bayesian Information Criterion (BIC) has been developed [22, 60]. This
criterion finds the model which best compromises between complexity and accuracy.
The idea is to initially generate and train several models with varying number of
Gaussians. The BIC value are then computed for each model based on the number
of parameters and the maximized log-likelihood of the model, where a lower BIC
value indicates a better fitted model.

As training several Gaussians with the EM algorithm can be cost intensive a
faster approach was proposed in [60] where speed is traded for accuracy by applying
a fast k-Mean clustering instead of training each Gaussian individually. When the
training was over the BIC values were calculated as usually. The proposed approach,
however, usually resulted in an over fitted model, but the total computational time
was significantly less. When the model with the lowest BIC value was selected it was
subsequently trained with the EM algorithm.

When the correct model has been finalized, it is passed on, potentially through an
optimization step, to the GMR which is responsible to generate the desired output
from the given input. The chosen model consists of Gaussians which can be visualized
as a system of attractors resulting in a compact representation of the movement.
Different inputs are required for the different mixture models; GMM requires time
as input [22, 60], whereas HMM requires the current task space configuration [20].
The output from the mixture models, and thus input to the GMR, is their spatial
information along with their covariance matrices. The resulting output obtained
through regression is calculated as a linear combination of the conditional expectations
of the input of each Gaussian component. The linear combination is weighted based
on the probability of each Gaussian for a GMM. However, for a HMM the weight is
also influenced by the transition probability from the previous state. The output
from the regression can be interpreted for instance as the commanded Cartesian
velocity.

2.2.3 Dynamical system modelling of skills

In contrast to encoding trajectories as statistical models, mainly two other methods
where the trajectory is encoded as a dynamical system exist. One method encodes
the trajectory as a Stable Estimator of Dynamical Systems (SEDS) [46] and the other
as a DMP [40].

Stable Estimator of Dynamical Systems

The idea behind SEDS is to learn globally stable discrete movements such as Point-
To-Point (PTP) movements as a dynamical system [46]. To be able to learn a feasible
representation of the movement several demonstrations are needed as these acts as
the input for the statistical encoding of the movement. For modelling the movement
GMM is used. The global stability ensured by SEDS means that as long as the
starting point of the movement lies within the task space it will converge to the
given goal vector. The reproduced movements from the previous mention models
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(HMM, GMM, etc.) could not ensure global stability, and in most cases not even
local stability, where the starting point of the movement lies within a subspace of
the task space.

As stipulated before, SEDS consist of a GMM and thus learning the unknown
parameters of the model (priors, covariance matrices and mean vectors) is required.
When Learning the unknown parameters the global stability criteria has to be fulfilled
and thus the problem has to be formulated as a Non-Linear Programming (NLP)
problem [46]. The NLP problem can always be solved using standard optimization
techniques. However, due to the fact that the NLP problem is non-convex, the
optimization step cannot ensure that the solution is globally optimal.

Dynamic Movement Primitive

A DMP represents a stable known dynamical system expressed as a spring-damper
system modulated with a nonlinear function to enable reproduction of complex
trajectories. The building block in the DMP framework is a transformation system,
a canonical system, and a forcing function. The DMP framework is explained in
more detail in Chapter 3.

2.3 Comparison
Up to this point several different methods, all used by the LfD framework, have been
presented. These methods all have their individual advantages and disadvantages.
However, in this thesis the skill to learn is how to play the ball-in-a-cup game
(discussed in Chapter 6) which sets some requirements on the learned movement.
First of all, learning the movement from one demonstration only is necessary. Secondly,
the reproduced movement has to be smooth. With all this in mind, a thorough
comparison between the discussed learning algorithms has to be conducted as this
will opt as a reference for selecting the best method for learning the ball-in-a-cup
game.

For learning to play the ball-in-a-cup game the symbolic learning approach is not
applicable as this learns the task on a high level. The game can only be successfully
played by the robot if it can execute accurate movements and for this to be possible
controlling it on a low level is the only way.

As symbolic learning is not applicable for learning the skill of playing the ball-in-
a-cup game, the skill has to be learned on trajectory level. The traditional trajectory
learning techniques splines or Bézier curves is very limited and lacks flexibility as
only position is modelled over time and because of this they are not considered
either. Hence, the only LfD approach left is to represent the skill as a statistical
model or as a dynamical system. However, as there exist several methods for both
statistical and dynamical encodings of a skill, not many studies have been conducted
to comparing all of these. The only comprehensive comparison is presented in [20],
where HMM, LWL, LWPR, DMP and TDGMR are compared. The evaluation is
based on five metrics comparing the similarity between the reproduced movement
and the demonstrated one. The metrics used in the comparison were: the Root Mean
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Square (RMS) error, the RMS error after DTW , norm of Jerk, learning time, and
retrieval duration.

The RMS error depicts how well the reproduced trajectories follows the demon-
strated one. It takes into consideration both the spatio and temporal information.
The extended RMS error after DTW aligns all the demonstrations in time before
calculating the RMS error. By doing this, emphasis is given to the spatial infor-
mation, i.e. instead of comparing the trajectory along time the actual path which
the robot follows is used as the metric. The norm of jerk evaluates how smooth
the reproduced movement is. The metric is based on the RMS jerk quantification
and is calculated from the derivation of acceleration, which sets a good standard for
human motion smoothness [35]. The learning time evaluates the time it takes for
the learning algorithms to finish its computations, whereas the retrieval duration is
the time it takes for one iteration to finish the retrieval process.

In the comparison step in [20], three different movements were generated. From
this set of movements, the learning algorithms have three attempts to reproduce the
movement. The reproduction procedure was then repeated for different amount of
states, ranges of perturbation, and dimensionalities. In Figures 9 and 10 the results
are presented, where the former figure presents the influence with variable number
of states and the latter with variable number of dimensionalities. The states are
represented with the variable K which, in case of a DMP, also represent the number
of basis functions and the dimensionalities by the variable D.

From Figures 9 and 10 the RMS error both with and without DTW produce
seemingly equal results. Both for a high number of states and dimensionalities the
error is extremely small, which in terms of the reproduction accuracy means that the
deviation from the demonstrated trajectory is almost negligible. However, in Figure
9 the reproduction from a DMP is high with for low number of states, but is almost
unaffected after a certain number. Hence, the reproduction accuracy for a DMP is
highly dependant on the number of basis functions.

For a variable set of states HMM produces the largest norm of jerk. HMM is also,
together with LWPR, among the worst performers when considering the norm of
jerk with a variable number of dimensions. The lowest norm of jerk, on the other
hand, is achieved by the DMP, and this, in comparison to the highest norm of jerk
in respective figure, is about five times lower. An interesting point regarding the
smoothness of the reproduced movement is that a DMP is able to produce a smoother
movement than the actual demonstration. Furthermore, the number of states does
only affect the reproduction smoothness by LWPR in a larger extend, whereas a
larger number of dimensions seems to mostly impair the smoothness of HMM and
LWPR, but it also affects the other in a smaller scale.

The learning time for a DMP and LWR is unaffected by the number of states,
whereas they almost increases linearly for the rest of the methods. Although the same
seems to apply for the retrieval time, this is actually not the case as the retrieval
time for the LWR algorithm is so high, over 7× 10−2s, that it is outside the graphs.
However, for the rest of the methods the low retrieval time is favourable because it
allows online learning. The high variation in learning time for both HMM and TGMR
originates from the inherited behaviour of the EM algorithm which always initializes
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the training randomly and stops when a local maximum is found. Therefore, nothing
can be said with certainty how many iterations it takes before a local maximum is
found.

As a side note, the total learning time for the LWPR algorithm in Figure 9 is
over 10 iterations with the dataset randomly shuffled at each iteration. Hence, for
only a single iteration the computational time can be trimmed down with one order
of magnitude.

Figure 9: The evaluation results for different learning approaches over a variable
amount of states but a fixed set of dimensionalities (D=7). The dashed line in the
graph indicates the mean RMS jerk of the demonstrations. (Source: [21]).
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Figure 10: The evaluation results for different learning approaches over a variable
amount of dimensionalities but a fixed number of states (K=4). The dashed line in
the indicates the mean RMS jerk of the demonstrations. (Source: [21]).

2.4 Discussion
LfD is indeed a versatile approach for teaching a robot a new skill in relation to
preprogramming. Not only is it more versatile but it is also significantly cheaper and
faster. However, it is not a trivial task to first teach the robot and then have it learn
the new skill. Several approaches exists for both teaching and learning. Thus, their
individual advantages and disadvantages need to be considered before selecting one
over the other.

As previously mentioned, the skill to be learned by the robot in this thesis is
how to play the ball-in-a-cup game. To teach the movement three different methods
exists: kinesthetic teaching, observational learning and teleoperation. Out of these
three methods one has to be chosen for demonstrating how to play the game to
a KUKA robotic arm used in the experimental part. To select the best possible
teaching methods the advantages and disadvantages of the individual methods had
to be compared.

Observational learning is indeed a good approach as it does not require controlling
the robot at all for teaching the skill. However, the correspondence problem in
observational learning is such a significant problem to solve that different methods
are preferred. For teaching the robot directly the demonstrated movement has
to be both accurate and executed in high speed. With teleoperation neither of
these requirements can be fulfilled, thus excluding this mean of teaching. With
all this in mind, kinesthetic teaching avoids the correspondence problem as the
demonstration is performed directly on the robot by grabbing it and showing the
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movement. This also ensures that the movement can be taught with high speed and
precision. Thus, kinesthetic teaching is chosen as the teaching method to be used
later in the experimental part.

As the movement has been transferred through kinesthetic teaching, the responsi-
bility is shifted over to the robot to learn a representation of this movement. Based on
the results from Section 2.3, the selected method for learning is DMP. The decision
was mostly based on the ability for the DMP to reproduce smooth trajectories, which
is crucial when playing the ball-in-a-cup game. Furthermore, has the same skill also
previously been modelled as a DMP [50] . Moreover, a DMP was able to both learn
and reproduce the movement fast, which is important for online learning.

2.5 Alternative Approaches to Learning from Demonstra-
tion

The learning from demonstration framework is not the only approach for a robot to
acquire new skills. Another view of learning is inspired by humans and animals, hence
the name biologically-inspired learning. This method takes advantages on the modern
science of artificial neural network which imitates Mirror Neuron System (MNS). A
thorough introduction to MNS is presented in [68]; however, a more recent version
of the same article is presented in [69].

In contrast to LfD, direct programming and MNS, a skill can also be learned
by reinforcement learning. The benefits of this approach is that learning is fully
autonomous and the learned skill can be adapted to varying dynamics. On the other
hand, in a high dimensional space, where both actions and states are continuous,
finding an optimal policy can take infinite amount of time due to the “curse of
dimensionality” [9]. However, in comparison to LfD, where a skill which cannot be
demonstrated is impossible to learn, RL can still learn this skill provided that the
search space is small. RL is explained in more details in Chapter 4.
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3 Dynamic Movement Primitives
Movements in the animal kingdom can be seen as combining motor primitives,
which has been witnessed in despinalized frogs [32] where the leg ended up moving
in a point-attracting movement when the spinal cord was stimulated. The same
movement primitives were also found in rats [96], cats [55] as well as for vertebrates
and invertebrates [29]. All these studies point toward complex movements being
built from a library of movement primitives.

This idea has later been applied to robotics where primitives is the linkage
between the perceptual system and the motor system and is the primary factor for
complex imitation [57]. For modelling these motor primitives a framework known as
dynamic movement primitive was presented in [83]. This framework enable robots to
learn complex movements on trajectory level as a dynamical system. The replicable
movements can either be discrete, for example in reaching tasks [38], or rhythmic, for
example in biped locomotion [63]. Another definition of the discrete and rhythmic
movements are point attractor and limit cycle movements [39]. The following sections
in this chapter will explain the whole DMP framework starting from modelling a
DMP.

3.1 Modelling the DMP
The theory behind DMP is well established in [38] where the heart of the model is a
point-attractor system modulated with a nonlinear function to enable generation of
complex movements. One point-attractor system is the spring-damper system

τ ÿ = αz(βz(g − y)− ẏ) (1)

where τ is the duration of the movement, αz and βz are constants chosen in order to
ensure that the system becomes critically damped, g is the goal state and y, ẏ, ÿ is
respectively the desired position, velocity and acceleration. Equation (1) can also be
written in a first-order notation as

τ ż = αz(βz(g − y)− z)
τ ẏ = z.

(2)

The intuition behind using a spring-damper system is that the spring, after excitation,
always converges to the goal state in a finite amount of time. Hence, the end state will
always converge to the goal state (See Figure 11). However, such generated trajectories
are trivial as they always form similar shapes and thus more complex patterns are
needed for controlling complex movements. This is realized by modulating Equation
(2) with a nonlinear function f, resulting in [38]
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Figure 11: This figure shows the trajectory generated form an excited spring-damper
system. The trajectory oscillates around the set-point, which in this case is 1, in a
damped fashion.

τ ż = αz(βz(g − y)− z) + f,

τ ẏ = z.
(3)

Equation (3) is called for the transformation system and the nonlinear function f for
the forcing function.

The forcing function is defined as a linear combination of basis functions

f(t) =
∑N
i=1 Ψi(t)wi∑N
i=1 Ψi(t)

, (4)

where Ψi denotes a basis function and wi represents the corresponding adjustable
weight. It is interesting that the complex nonlinear function is represented as a
linear combination of simple basis function, which is of common praxis in Machine
Learning (ML) [13]. The forcing function is also responsible to either generate discrete
or repeating movements. The former movement is realized by having a phasic forcing
function and the latter by having a periodic one. The following derivations are based
on discrete movements, whereas the rhythmic movements will be introduced later.

As can be seen in Equation (3) the forcing function, f , is time dependent. As a
consequence the basis functions becomes broader as time moves forward (see Figure
13a), resulting in shorter activation time for early kernels and longer for latter ones.
Therefore, to equispace the kernels equally in time a variable x, called phase variable,
is introduces as a replacement for time. The variable is defined as a first order
differential equation

τ ẋ(t) = −αxx(t), (5)
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where αx is a fine-tuned constant which enforces a stable system, and τ is the same
time constant as previously. This equation is called the canonical system and has
the solution

x = x0 exp(−αx
t

τ
). (6)

Equation (6) will, whatever positive initial value x0 is (usually x0 = 1), converge
exponentially to zero as the execution time t converges to infinity (see Figure 12). By
replacing time in Equation (4) with the phase variable in Equation (6) the nonlinear
forcing function can be rewritten in a time independent form

f(x) =
∑N
i=1 Ψi(x)wi∑N
i=1 Ψi(x)

x(g − y0), (7)

where g is the goal, y0 is the initial state and ψi(x) are defined as Gaussian kernels

Ψi(x) = exp
(
− 1

2σ2
i

(x− ci)2
)
, (8)

where σi is the standard deviation (width) and ci is the mean (centre) of a kernel.
It is interesting to note the differences between the time dependant and indepen-

dent forcing functions in Equations (4) and (7). The latter equation is, in addition
to being time independent, also scaled with the phase variable x and the factor
g − y0. The reason behind scaling Equation (7) with the phase variable x is that
this ensures global stability of the system because as x converges to zero so does f
and with it its influence, resulting in the same unique point attractor (z, y) = (0, g)
as the regular spring-damper in Equation (2). The extra scaling factor g − y0, on
the other hand, provides a possibility to scale the movement according to changes
in its amplitude [38]. Additionally a time independent forcing function enables to
either speed up or slow down the execution of the movement, something which is
otherwise impossible. All in all, the whole system converges to the globally stable
point-attractor (z, y, x) = (0, g, 0) as time converges to infinity.

Up till now the focus has been on generating discrete movements. However,
rhythmic movements are also of great interest as many human motions such as biped
locomotion is of this kind [63]. To adapt the point-attractor system to a periodic
motion, periodicity is either inserted in the basis function or in the canonical system.
In [38] the emphasis lies on the latter proposal where a simple phase oscillator

τ φ̇ = 1 (9)

is used as the canonical system. The constant φ is the phase angle of the oscillation
defined within the region [0, 2π] and r is the amplitude of the oscillation. By
inserting the phase angle φ and amplitude r of the movement into the forcing and
basis functions they can be rewritten into the following form

f(φ, r) =
∑N
i=1 Ψi(φ)wi∑N
i=1 Ψi(φ)

r,

Ψi(φ) = exp (−hi (cos(φ− ci)− 1)) ,
(10)
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Figure 12: In the discrete system the canonical system converges to zero as time
converges to infinity. Here τ = 1, α = 2 and x0 = 1.

(a) The kernels are not equispaced
in time and hence they get broader
and broader as time converges to in-
finity. This causes problems as the
first kernels are not activated for as
long as the kernels to the end.

(b) The phase variable allows every
kernel to be eqispaced and hence
all of them are active for an equal
amount of time.

Figure 13: In the figure to the left the kernels are time dependent whereas in the
right figure they are phase dependent.

where Φi is a von Mises basis function [41]. This formulation provides the possibility
to change the amplitude and period in real time by changing r and φ respectively. The
goal g in the transformation system defines the set or anchor point of the oscillatory
trajectory and can be adapted to the desired oscillation baseline.

3.2 Learning the DMP
In the previous section, the attractor landscape for both discrete and rhythmic
movements were established. It is worth noting that the forcing function includes
both unknown weights and basis functions. The role of the basis functions is to
enable a smooth reproduction of the movement and the number of such functions is
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defined in advanced by trial and error. The role of the weights, on the other hand, is
to define the spatio temporal path by weighing the basis function differently. The
values of the weights, in contrast to the basis functions, have to be learned and
cannot be set in advance.

For learning an initial representation of the parameters wi supervised learning is
used, which is possible as these parameters are linear [38]. In supervised learning
some initial input and output data is provided [13]. In the case of learning a
DMP the interesting parameters are the positions, velocities and accelerations
(ydemo(t), ẏdemo(t), ÿdemo(t)), sampled at different time instances t ∈ [1, . . . , P ]. For
discrete movements the goal g is the position at time P , g = ydemo(t = P ), and
the start position is the position at time 0, y0 = ydemo(t = 0). In contrast to
the discrete movement, the rhythmic one defines the goal, duration and amplitude
differently. The goal g is the midpoint of the movement g = 0.5(mint∈[1,...,P ](ydemo(t))+
maxt∈[1,...,P ](ydemo(t))), the duration τ is the period of the motion divided by 2π and
the amplitude r is set to the value 1.0.

The duration of the movement τ can be extracted from the demonstration.
However, to sense a movement onset or offset, a threshold value should be set, for
instance at 2% of the maximum velocity of the trajectory [38]. Then, at the end, the
total duration τ should be multiplied by 1.05 to compensate for the thresholding.

When all the required parameters are set, the weights in Equation (7) can be
calculated. This is done by first rearranging Equation (2) to get an explicit form for
the forcing function f

f = τ ż − αz(βz(g − y)− z). (11)

Knowing the desired values from the demonstration and inserting them in the previous
equation yields

ftarget = τ 2ÿdemo − αz(βz(g − ydemo)− τ ẏdemo). (12)

Now the issue is how to set the parameters in f to be very close to ftarget. This is
a function approximation problem where existing methods like Gaussian mixture
models [47] and LWR [81] can be applied, both discussed in Chapter 2. The one
chosen is LWR as it is fast and enable kernels to learn their values individually.

The goal in LWR is to minimize the weighted quadratic error

Ji =
P∑
t=1

Ψi(t)(ftarget(t)− wiε(t))2, (13)

where ε(t) = x(t)(g − y0) for discrete movements and ε(t) = r for rhythmic ones.
This regression model finds corresponding weights wi to the individual kernels Ψi

such that the minimization is fulfilled. The solution to the regression problem is

wi = STΓiftarget

STΓiS
, (14)
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where

S =


ε(1)
ε(2)
...

ε(P )

 Γi =


Ψi(1) 0 . . . 0

0 Ψi(2) . . . 0
... ... . . . ...
0 0 . . . Ψi(P )

 ftarget =


ftarget(1)
ftarget(2)

...
ftarget(P )

 .

The regression performed in Equation (14) is called batch regression where the idea
is to perform the regression once all the data is gathered. Another approach is LWPR
where the regression is updated incrementally as new data becomes available. Both
LWR and LWPR were discussed in Chapter 2 and the main difference between the
two approaches was the computational complexity, which for LWR was polynomially
O(n2) and for LWPR linear O(n). Therefore, if one expects the data set n to be
large, LWPR is the main choice. Although, in our experiment, this is not the case
and LWR will suffice.

As the weights, which can have both positive and negative values (see Figure
14), have been learned they are used by the transformation system to generate a
representation of the demonstrated trajectory (see Figure 19). Unfortunately, the
initially learned representation of the movement is not always capable of reproducing
a taught skill successfully. For instance in [50] the demonstrated skill is how to play
the ball-in-a-cup game. Even tough the ball went into the cup in the demonstration
part, the initially learned DMP could not generate such a movement where the ball
went into the cup. Thus, for successfully learning the skill, the shape parameters
of the DMP needed to be fine-tuned with subsequent reinforcement learning. How
this is done will be explained in Chapter 4. However, before proceeding to that the
learned movement has to be scaled to multiple DoF, which will be explained next.

3.3 From One To Multiple Degrees of Freedom
Until now the focus has been on learning a DMP for a single DoF. However, a real
robotic manipulator usually consists of several degrees of freedom, which is also the
case for the robot used in this thesis (see Figure 19). Hence, the basic idea of the
transformation and canonical system needs to be extended to cope with multiple
DoF.

There are basically three different alternatives for extending the DMP framework
to multiple DoF. The first option is for all DoF to have their own transformation
and canonical system. The second option is for all DoF to be coupled together with
a special coupling term. While the third option is for all DoF to have their own
transformation system but share an internal canonical system as is presented in
Figure 16.

The disadvantages with the first alternative is synchronisation, as there are no
part where information is shared between any degree of freedom they can, in the
long run, diverge numerically far from each other. On the other hand, information
shared can also be a potential problem. This occurs in the second alternative where
the system grows too complex, and tuning the coupling terms is difficult. With this
in mind, the third option seeks to solve these problems by combining the simplicity
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Figure 14: This figure shows an example of the learned weights from one demonstra-
tion. (Source [82]).

Figure 15: This figure show the reproduced trajectory by a DMP with the weights
presented in Figure 14. The superimposed smooth line is the ideal movement which
minimizes the integral of squared jerk along the trajectory. Noteworthy is that the
learned trajectory is not far from the ideal one. (Source [82]).

of the first and the complexity of the second into a mixture of both. This solution
will force the canonical system to act as a global clock to couple all DoF together.
However, there are no definite rules on how the coupling has to be done. For example
in a humanoid robot with several arms, each arm might have its own canonical
system which then has to be coupled together to provide synchronising movements
of both arms [38].

In conclusion, the extended DMP formulation allows for learning complex move-
ments in multiple DoF by having a simple attractor landscape perturbed by a
nonlinear forcing function which decreases monotonically as to preserve the global
stability of the whole system.
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Figure 16: An overview for scaling the DMP to multiple DoF. Each DMP has its
own transformation system while they share a common canonical system acting as a
global clock to sync the different transformation systems together. (Source [38]).
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4 Reinforcement Learning
In RL the goal is to learn an optimal policy, resembling what actions to choose as to
maximize the gained rewards [90]. Hence, in contrast to supervised learning, no prior
information is given about the task, and learning it is based on an iterative approach
of choosing actions and observing the rewards. Some classical approaches to solve RL
problems is Q-learning and SARSA, both mentioned in [90]. Reinforcement learning
is a powerful learning method when the states and actions are few and discrete;
however, with continuous states and actions, common in robotics, the search space
grows too large and is bounded by the "curse of dimensionality”[9]. Hence, RL alone
is not applicable for learning a robot how to perform tasks.

Up to this point, both RL and DMP have been proven impossible as a learning
framework for complex tasks. However, when combining the two approaches their
individual problems disappear, and learning complex tasks is made possible. The
idea behind combining RL and DMP is to first encode the demonstrated skill as a
DMP and then subsequently fine-tune the shape parameters of the DMP by an RL
algorithm. As the output from a DMP can be a suboptimal policy, the goal with RL
is to search for an optimal policy, hence the name policy search.

Skills can either be defined as episodic or nonepisodic with a finite or infinite time
horizon. As many skills are episodic with a finite time horizon, for example reaching
tasks, these set of skills will be the focus in this chapter, while the rest are discarded.

In this chapter the basics of reinforcement learning is introduced. This concept
will then be extended into the policy search space where two approaches are presented:
one based on policy gradient [91, 100], and another based on expectation maximization
[27, 72]. All in all, two algorithms per approach will be presented. In the policy
gradient case the basic ‘Vanilla’ Policy Gradient (VPG) algorithm [100] and episodic
Natural Actor Critic (eNAC) algorithm [71, 73] are presented. In the EM case the
basic episodic Reward Weighted Regression (eRWR) algorithm [72] and the improved
Policy Learning by Weighted Exploration with the Returns (PoWER) algorithm [51]
are presented.

The last mentioned algorithm, PoWER, has previously been applied as a policy
search algorithm to the ball-in-a-cup game [50], and can currently be seen as one of
the best policy search algorithms. However, there also exist a competing one, based on
Stochastic Optimal Control (SOC), called Policy Improvement with Path Integral (PI2)
[95]. Thus, PI2 will also be discussed. Based on the individual performance of both
PoWER and PI2 one will be chosen and implemented for improving a policy in the
ball-in-a-cup game.

4.1 Problem Statement and Notation
RL was introduced in [90] where the idea is to learn by interaction with the envi-
ronment. Learning through interactions is common among humans as we do this
throughout our lives. For example, an infant learns how to walk through a repetitive
trial and error interaction with the environment. Thus, reinforcement learning, in its
essence, is something everyone has experienced.
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Before going into detail about reinforcement learning some basic notations has to
be defined. First we have to assume there exist an agent in an environment which at
time t chooses an action at. This action transfers the agent from the current state st
to the next state st+1 while receiving a reward rt. The reward can either be positive
or negative, depending if a certain behaviour should be penalized or encouraged.
The actions are chosen as one amongst several possibilities, resulting in a stochastic
policy π(at|st, t), where the current action depends on the current state and time. By
having a stochastic policy different actions are tested all the time, a concept known
as exploration.

As stipulated before, this thesis concentrate on episodic finite time horizon cases,
where the ultimate goal is to improve an initial parametrized policy for a complex
motor task. The parametrized policy is assumed to be stochastic with parameters
θ ∈ Rn. An episodic environment is defined by having some absorbing states, also
called end states, from where an agent cannot escape. If such a state is visited,
the agent is transferred back to the start state, while the previously visited states,
actions chosen, and accumulated rewards are stored. The whole process from start
to end state is called a ‘Monte Carlo rollout’ or simply a ‘rollout’, and is defined
as Ω = [s1:T+1, a1:T ], where s1:T+1 = [s1, s2, . . . , sT+1] are the visited states and
a1:T = [a1, a2, . . . , aT ] are the chosen actions.

The goal with RL is to find a policy π parametrized by the policy parameters θ
such that the expected returns defined as J(θ) are optimized. This results in the
following Equation

J(θ) =
∫
T
pθ(Ω)R(Ω)dΩ, (15)

where P (Ω) is the probability of rollout Ω, andR(Ω) is the corresponding accumulated
reward form that specific rollout. The integration is taken over all possible rollouts.

Equation (15) can be simplified if the Markov property holds, and if the rewards
are additive and cumulative. The Markov property refers to future states being
independent of past states if the current state is known [16]. These assumptions
simplifies pθ(Ω) and R(Ω) to

pθ(Ω) = p(s1)
T∏
t=1

p(st+1|st, at)π(at|st, t),

R(Ω) = T−1
T∑
t=1

r(st, at, st+1, t),
(16)

where p(s1) is the distribution of the initial state, p(st+1|st, at) is the next state distri-
bution at time t+ 1 given the current state and action at time t, and r(st, at, st+1, t)
is the immediate reward received when transferring from state st to state st+1 by
choosing action at.

4.2 Episodic Policy Learning
The focus in this section is on RL for optimizing policies which are episodic and
have a finite time horizon. Before deriving the state-of-the-art episodic RL algorithm
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PoWER several steps defined in [51] have to be discussed. First a lower bound on the
expected reward has to be set for reassuring improvements of the policy update steps.
The derivation of the lower bound follows [27] which, unfortunately, only considers
immediate rewards. Thus, in the second step the lower bound of the update step
based on the immediate reward is extended to also work for episodic RL. Based
on this result a general rule for updating policies can be derived. Finally, based on
this update rule, the policy gradient theorem [92] and the PoWER algorithm can be
derived.

4.2.1 Defining the Lower Bound of the Policy

In contrast to classic RL, the EM algorithm aims to optimize the lower bound of the
cost function [58]. Intuitively, this makes sense as long as the lower bound can be
used as a sampling policy, then by maximizing it the resulting policy will also be
improved.

To prove the previous statement, we extend the work in [27] to the episodic
scenario. First, assume an existing policy with parameters θ from which rollouts Ω can
be collected and rewards R(Ω) received. The goal is then to match the known policy
with parameters θ weighted with the rewards R(Ω) to a new policy with parameters
θ
′ . The matching is realized by minimizing the Kullback-Leibler (KL) divergence
D(pθ(Ω)R(Ω) ‖ pθ′ (Ω)) between the current reward weighted distribution and the new
one. The KL divergence is defined in machine learning as a distance measure between
two probability distributions [8][99]. It is, however, not strictly a distance measure
because it is non-symmetric, i.e. D(pθ(Ω)R(Ω) ‖ pθ′ (Ω)) 6= D(pθ′ (Ω) ‖ pθ(Ω)R(Ω)),
but this does not impose any major problems and can therefore be used. A lower
bound on the policy is then obtained by maximizing the KL divergence by utilizing
Jensen’s equality and the concavity of the logarithm [27, 72]. This results in

log J(θ′) = log
∫
T
pθ′ (Ω)R(Ω)dΩ = log

∫
T

pθ(Ω)
pθ(Ω)pθ

′ (Ω)R(Ω)dΩ

≥
∫
T
pθ(Ω)R(Ω) log pθ

′ (Ω)
pθ(Ω) dΩ + const

∝ −D(pθ(Ω)R(Ω) ‖ pθ′ (Ω)) = Lθ(θ
′),

(17)

where the KL divergence is denoted as

D(p(Ω) ‖ q(Ω)) =
∫
p(Ω) log p(Ω)

q(Ω)dΩ.

The constant is Equation (17) is essential for reassuring a tight bound.
The lower bound Lθ(θ

′) can be optimized in two ways, either by policy gradient
search or with the EM algorithm. For clarification, both methods are presented,
where the latter one results in the previously mentioned PoWER algorithm.

4.2.2 Policy Gradient Search

In the previous section, the idea of maximizing the lower bound Lθ(θ
′) to improve the

policy was introduced. Furthermore, two methods for realizing this was mentioned,
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where one was to use policy gradient search. In this section, two policy gradient
optimization algorithms, the vanilla policy gradient [100] and episodic Natural Actor
Critic [7, 71], are presented.

For maximizing a function the basic idea is to calculate its gradient. This is applied
to form the VPG algorithm (see Algorithm 1) where the function to differentiate is
the lower bound Lθ(θ

′), resulting in

∂θ′Lθ(θ
′) =

∫
T
pθ(Ω)R(Ω)∂θ′ log pθ′ (Ω)dΩ = E

{(
T∑
t=1

∂θ′ log π(at|st, t)
)
R(Ω)

}
,

(18)
where

∂θ′ log pθ′ (Ω) =
T∑
t=1

∂θ′ log π(at|st, t)

is the log-derivative of the state distributions. It is worth noting that the log-derivative
is only dependent on the policy π. Thus, estimating the gradient can be done from
performing rollouts by replacing the expectation in the previous equation by a sum.
If θ is close to θ′ the partial derivative of the lower bound can be rewritten as

lim
θ′→θ

∂θ′Lθ(θ
′) = ∂θJ(θ).

This estimator is the same one which is used in the widely known episodic REIN-
FORCE algorithm [100].

The problem with the policy gradient algorithm is the non-existing restriction
in the amount the new policy can differ from the old one. This can, in the worst
case, lead to large infeasible changes. Therefore, large changes should be avoided,
something which is fulfilled in the eNAC algorithm (see Algorithm 2). In this
algorithm large differences are penalized. The penalization is realized by adding an
additional constraint to the KL divergence and approximating it as a second-order
expansion as

D(pθ(Ω) ‖ pθ′ (Ω)) ≈ 0.5(θ′ − θ)TF (θ)(θ′ − θ) = δ,

where F (θ) is the Fisher information matrix [8, 83]. Moreover, the estimator in the
eNAC algorithm utilizes the fact that future actions are uncorrelated with previous
rewards. Thus, when combining Equations (16) and (18), the expectation of the
product between rt and ∂θ′ log π(at+δt|st+δt, t + δt) vanishes for all positive δ [71].
This simplification reduces the estimator in Equation (18) to

∂θ′Lθ(θ
′) = E

{
T∑
t=1

∂θ′ log π(at|st, t)Qπ(s, a, t)
}
, (19)

where Q is the state-action value function defined as

Qπ(s, a, t) = E


T∑
t̃=t

r(st̃, at̃, st̃+1, t̃)|st = s, at = a

 .
If the dependence on time is removed from Equation (19), then as time goes to
infinity θ′ → θ which is identical to the policy gradient theorem [91].
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4.2.3 Policy Search by Expectation-Maximization

In both the VPG and eNAC algorithms there is an open tunable parameter α
called the learning-rate parameter. For performance issues this parameter has to
be fine-tuned, which is both tedious and hard to accomplish. To overcome this
problem, policy search with EM is employed. This method utilizes the EM algorithm,
which in supervised learning avoids the learning parameter while providing a faster
convergence rate [58].

The idea behind the EM algorithm is to iteratively find the maximum likelihood
of a latent variable. In this case the latent variable is θ, and its next value corresponds
to maximizing the lower bound defined in Equation (17) as

θt+1 = arg max
θ′

Lθ(θ
′).

Solving the maximization, and subsequently obtaining the next θ value, is fulfilled
by setting the gradient of the lower bound w.r.t. θ′ to zero, and then solving for θ′ .
This can be done analytically, provided that the stochastic policy π(at|st, t) is an
exponential function, by either setting Equations (18) or (19) to zero, and solve for
θ
′ . Choosing the latter equation results in

E

{
T∑
t=1

∂θ′ log π(at|st, t)Qπ(s, a, t)
}

= 0. (20)

Note that different stochastic policies results in different solutions and subsequently
different learning algorithms.

Generating the actual stochastic policy has so far not been discussed. First, we
have to define a deterministic mean policy a as ā = θTφ(s, t), where φ are basis
functions and θ the parameters. To transform this into a stochastic policy, noise or
exploration defined as ε(s, t) is added to the mean policy, which enables model-free
reinforcement learning. The resulting stochastic policy π(at|st, t) can then be written
as

a = θTφ(s, t) + ε(φ(s, t)). (21)

The exploration term ε can be chosen freely, but in previous studies [71, 72] it
has been defined as a state-independent Gaussian distribution ε(φ(s, t)) ∼ N (ε|0,Σ).
With the Gaussian exploration, Equation (20) is solved for θ′ by reward-weighted
regression, as in Algorithm 3. Several applications are based on this solution including
T-Ball batting [71] and Peg-In-Hole [34].

This approach seems to work well in many applications. However, for the ball-in-a-
cup game it is not applicable because of the problems with unconstrained exploration
at every time step. The drawbacks are: 1) a large variance in the policy parameter
update which grows with the amount of time steps, 2) the system works as a low
pass filter, thus the effect of high frequency perturbation of actions averages out,
and in the end the effect vanishes, and 3) the system executing the trajectory can be
damaged. The third problem occurs as sudden instantaneous changes in the policy
might force instantanious movements of the robot which is not possible as the motors
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and links have to overcome inertia induced by previous actions, and the controller
needs time to react.

Therefore to enable policy search for the ball-in-a-cup game, an extension to the
current framework is needed. This extension results in the PoWER algorithm [51],
which will be presented in the next section.

Algorithm 1 ’Vanilla’ Policy Gradients (VPG). (Source: [51]).
Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as a stochastic policy and collect all (t, sh

t , ah
t , sh

t+1, ε
h
t , rh

t+1)
for t = {1,2, . . . ,T + 1}.
Compute: Return Rh = ∑T+1

t=1 rh
t , eligibility

ψh,n = ∂ log p(Ωh)
∂θn

= ∑T
t=1

∂ log π(ah
t |s

h
t ,t)

∂θn
= ∑T

t=1
εh,nt

(σn
h)2φ

n(sh,n
t , t)

and baseline
bn =

∑H

h=1(ψh,n)2Rh∑H

h=1(ψh,n)2

for each parameter n = {1, . . . ,N} from rollouts.
Compute Gradient:

gn
VP = E

{
∂ log p(Ωh)

∂θn
(R(Ωh)− bn)

}
= 1

H

∑H
h=1 ψ

h,n(Rh − bn).
Update policy using

θk+1 = θk + αgVP
until Covergence θk+1 ≈ θk

Algorithm 2 episodic Natural Actor Critic (eNAC). (Source: [51]).
Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as a stochastic policy and collect all (t, sh

t , ah
t , sh

t+1, ε
h
t , rh

t+1)
for t = {1,2, . . . ,T + 1}.
Compute: Return Rh = ∑T+1

t=1 rh
t , eligibility ψh,n = ∑T

t=1(σnh)−2εh,nt φn(sh,nt , t)
for each parameter n = {1, . . . ,N} from rollouts.
Compute Gradient:

[gT
eNAC,Rref ]T = (ΨTΨ)−1ΨTR

with R = [R1, . . . , RH ]T and Ψ =
[
ψ1, . . . , ψH

1, . . . , 1

]T
where ψh = [ψh,1, . . . , ψh,N ]T .

Update policy using
θk+1 = θk + αgeNAC

until Covergence θk+1 ≈ θk
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Algorithm 3 episodic Reward Weighted Regression (eRWR). (Source: [51]).
Input: initial policy parameters θ0
repeat

Sample: Perform h = {1, . . . ,H} rollouts using a = θTφ(s, t) + εt with [εnt ] ∼
N (0, (σh,n)2) as a stochastic policy and collect all (t, sh

t , ah
t , sh

t+1, ε
h
t , rh

t+1)
for t = {1,2, . . . ,T + 1}.
Compute: State-action value function Qπ,h

t = ∑T
t̃=t rh

t̃
Update policy using

θn
k+1 =

(
(Φn)TQπΨn

)−1
(Ψn)TQπAn

with basis functions
Ψn = [φ1,n

1 , . . . , φ1,n
T , φ2,n

1 , . . . , φH,n1 , . . . , φH,nT ]T ,
where φh,n

t is the value of the basis function of rollout h and parameter n at
time t, actions

An = [a1,n
1 , . . . , a1,n

T , a2,n
1 , . . . , aH,n1 , . . . , aH,nT ]T ,

and return
Qπ =diag(Qπ,1

1 , . . . , Qπ,1
T , Qπ,2

1 , . . . , Qπ,H
1 , . . . , Qπ,H

T )
until Covergence θk+1 ≈ θk

4.3 Policy Learning by Weighted Exploration with the Re-
turns

The previous section introduced the policy search through EM, and resulted in the
eRWR algorithm, an algorithm with which the policy can be iteratively improved.
However, the drawbacks made it impossible to apply it as a policy search algorithm
for the ball-in-a-cup game. Hence, another algorithm which overcome these problems
is needed. This algorithm is the PoWER algorithm, and will be introduced next.

For solving the problems which the previous eRWR algorithm had, it is neces-
sary to redefine the exploration from a state-independent into a structured, state-
dependent one, as [78]. This results in an exploration defined as

ε(φ(s, t)) = εTt φ(s, t),

where εt ∼ N (0, Σ̂). The Σ̂ is called a meta-parameter, and can be optimized in a
similar manner as the θ parameter. By changing the exploration, the basic stochastic
policy introduced in Equation (21) becomes

a ∼ π(at|st, t) = N (a|θTφ(s, t), φ(s, t)T Σ̂φ(s, t)).

This policy is then inserted into Equation (20), which generates the optimal θ at
that specific time step. The policy parameter is then updated as

θ
′ = θ + E

{
T∑
t=1

W(s, t)Qπ(s, a, t)
}−1

E

{
T∑
t=1

W(s, t)εtQπ(s, a, t)
}
, (22)

where W(s, t) = φ(s, t)φ(s, t)T (φ(s, t)T Σ̂φ(s, t))−1. The derivation of Equation (22)
and maximization of Σ̂ follows from Appendix A.3 in [51].
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For an on-policy scenario, as presented here, the amount of rollouts needs to be
reduced to keep the variance of the expectation in Equation (22) low. To reduce
the rollouts, a concept known as importance sampling is used. This concept has
been introduce for RL in [4, 90]. To achieve it, the expectation in Equation (22)
is changed to the importance sampler denoted as 〈·〉w(Ω). There exist, however, a
problem with the importance sampler in RL, and that is fragility. In this case, the
consequence is a biased update, occurring when the parameters are updated with
the accumulated mass of several low rewarded rollouts. To avoid this problem, low
weighted rollouts are discarded. A good practise is to keep the j best rollouts, a
number which is of the same magnitude as the the number of parameters N .

PoWER is presented in pseudo code in Algorithm 4. This algorithm is robust
regarding the reward function. It is, however, required to model the reward function
as an improper probability distribution, thus restricting the individual rewards to
only positive values. If it is possible for the rewards to sum up to one, as for a proper
probability distribution, learning speed can be increased [51].

The convergence rate of the PoWER algorithm depends upon the amount of
open parameters, a low value improves convergence rate while a high value worsens
it. However, in comparison to non-EM inspired algorithms, this problem is of less
significant implication [51].

Algorithm 4 EM Policy Learning by Weighted Exploration with the Returns
(PoWER). (Source: [51]).
Input: initial policy parameters θ0
repeat

Sample: Perform rollout(s) using a = (θ + εt)Tφ(s, t) with
εTt φ(s, t) ∼ N (0, φ(s, t)TΣ̂φ(s, t)) as stochastic policy and collect all
(t, sh

t , ah
t , sh

t+1, ε
h
t , rh

t+1) for t = {1,2, . . . ,T + 1}.
Estimate: Use unbiased estimate

Q̂π(s, a, t) = ∑T
t̃=t r(st̃, at̃, st̃+1, t̃).

Reweight: Compute importance weights and reweight rollouts, discard
low-importance rollouts.
Update policy using

θk+1 = θk + 〈∑T
t=1 W(s, t)Qπ(s, a, t)〉−1

w(Ω)〈
∑T

t=1 W(s, t)εtQπ(s, a, t)〉w(Ω)

with W(s, t) = φ(s, t)φ(s, t)T(φ(s, t)TΣ̂φ(s, t))−1.
until Covergence θk+1 ≈ θk

4.4 Policy Improvement with Path Integrals
In contrast to the policy search methods based on maximizing the lower bound, there
also exist another method based on SOC and path integrals, where the goal is rather
to define and minimize the cost function. This theory is employed in [94], and results
in the PI2 algorithm. This algorithm, in its essence, is extremely simple as the only
open tuning parameter is the exploration noise. However, before presenting the
algorithm some theory behind optimal control needs to be established. The theory
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and derivation of the main equations are from [89], but for a full coverage the reader
is referred to [94].

In its essence SOC defines a control system as

ẋt = f(xt) +G(xt)(ut + εt) = f t +G(ut + εt), (23)

where xt is the state vector of the system, Gt = G(xt) is the control matrix,
f t = f(xt) is the passive dynamics, ut is the control vector and εt is noise sampled
from a zero mean Gaussian distribution with a covariance matrix Σ.

The value function is defines as

V (xti) = Vti = min
uti:tN

EΩi
[R(Ωi)], (24)

which is minimized by finding the controls ut over the expectation of the cost R.
The cost is accumulated from a trajectory Ωi as

R(Ωi) = φtN +
∫ tN

ti
rtdt, (25)

where ΦtN is the reward received at the end of the trajectory at time tN , and rt is
the immediate reward obtained at time t. From the definition of the reward function
in Equation (25), the trajectory has a finite time horizon starting at state xti at time
t and ending at state xtN at time tN .

The minimization of the value function in Equation (24) is coupled to the solution
of the stochastic Hamilton-Jacobi-Bellman (HJB) equation [30, 88], and results in

∂tVt = qt + (∇xVt)Tf t −
1
2(∇xVt)TGtR

−1GT
t (∇xVt) + 1

2trace
(
(∇xxVt)GtΣεG

T
t

)
(26)

u(xti) = uti = −R−1GT
ti

(∇xti
Vti), (27)

where uti is the optimal control at time ti. With these equations in mind, the PI2
algorithm seeks to find a solution to the nonlinear second order partial differential
equation (26), and subsequently apply the solution to improve the already obtained
policy. To realize this, the stochastic optimal control is transformed into a Generalized
Path Integral Control (GPIC), of which the PI2 algorithm happens to be a special
case.

To derive the GPIC from the SOC three main steps, defined in [94], are necessary:

1. Transform the value function into a logarithmic function defined in [45] as
Vt = −λ logψt, and simplify λR−1 = Σ. This results in a linear Partial
Differential Equation (PDE) called the Chapman Kolmogorov partial differential
equation.

2. Transforming the result obtained in the previous step, by the Feynman-Kac
theorem, into a path integral [45].
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3. The path integral obtained in the second step needs to be generalized by
separating the control transition matrix Gt into an controllable G(c)

t and
uncontrollable part G(m)

t [94].

These steps render the following equations

Vt = −λ logψt, (28)

ψti = lim
dt→0

∫
exp(−1

λ
S̃(Ωi))dΩ(c)

i , (29)

where

S̃(Ωi) = ψtN +
N−1∑
j=1

qtjdt+Cti . (30)

The integral in Equation (29) is performed over the rollouts dΩ(c)
i = (dxti , . . . , dxtN ).

The cost function S̃(Ωi) can be seen as the cost-to-go from the current time step i
to the end. This way of interpreting the cost function is widely known in dynamic
programming [9].

To get a global optimal solution for the value function in Equation (28) all
possible trajectories needs to be executed. This, however, is not possible for a
high-dimensional problem because the possible trajectories are too many. Thus, to
solve the problem a subset of the trajectories are selected. This, on the other hand,
makes it problematic to find low cost trajectories as many specific trajectories are not
performed. Moreover, the dynamics of the system might bias possible trajectories,
avoiding large state spaces and possible solutions. However, this is the price of
having an relative easy path integral representing the value function rather then the
extremely difficult HJB equation.

To obtain the optimal control minimizing the cost function, Equation (28) is
inserted into Equation (27), resulting in

uti = λR−1Gti

∇xti
Ψti

Ψti

, (31)

where Ψti is known from Equation (29). By inserting the expression for Ψti into the
previous equation and simplifying it, the final expression for the optimal control is
reduced to

uti =
∫
P (Ωi)D(Ωi)ε(Ωi)dΩ(c)

i , (32)

where P (Ωi), D(Ωi) and ε(Ωi) defines, respectively, the probability of a trajectory,
the local control, and the perturbed trajectory, all at time step i. The probability
term P (Ωi) is calculated as

P (Ωi) =
exp (− 1

λ
S̃(Ωi))∫

exp (− 1
λ
S̃(Ωi))dΩi

, (33)
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and the local control as

D(Ωi) = R−1G
(c)T
ti (G(c)

ti R
−1G

(c)T
ti )G(c)

ti . (34)

Is is worth noticing that the probability of a trajectory is inversely proportional
to the cost-to-go given by the cost function in Equation (30). Hence, a lower cost
trajectory entails a higher probability, and vice versa for a higher one.

The local control D(Ωi), which is needed for calculating the optimal control,
depends on the control matrixG(xt) and the passive dynamics f(xt). This dependency
causes GPIC to be model-based and not applicable to improving parametrized policies,
which in this thesis are rendered by the DMP. Therefore, to apply the GPIC to
improving trajectories learned by DMP, it has to be made model-free. This is realized
by replacing the passive dynamics f(xt) with the spring-damper system, and the
control matrix with a basis function gt defined as

ut = gTt (θ + εt), (35)

where εt is Gaussian exploration noise N (0,Σ), and θ is the current policy parameter.
The basis function is equivalent with the one defined in Equation (7), but with εt
added as noise to the already known weights wi as to explore a new policy. The
variance Σ is a user defined variable, and by changing it the exploration also changes.
These substitutions yields what is known as the PI2 algorithm, presented in pseudo
code in Algorithm 5.



37

Algorithm 5 Policy Improvement with Path Integrals (PI2). (Source: [94])
Input:
– An immediate cost function rt = qt + θTt Rθt
– A terminal cost term φtN
– A stochastic parameterized policy at = gTt (θ + εt)
– The basis function gti from the system dynamics
– The variance Σε of the mean-zero noise εt
– The initial parameter vector θ
repeat

– Create K rollouts of the system from the same start state x0 using stochastic
parameters θ + εt at every time step

– For k = 1, . . . , K, compute:
∗ e

− 1
λ
S̃(Ωi)∑K

k=1[e−
1
λ
S̃(Ωi)dΩi]

∗ S(Ωi,k) = φtN ,k+∑N−1
j=1 qtj ,k+ 1

2
∑N−1
j=i+1(θ+M tj ,kεtj ,k)TR(θ+M tj ,kεtj ,k)

∗M tj ,k =
R−1gtj ,kg

T
tj ,k

gT
tj ,k

R−1gtj ,k

– For i = 1, . . . , N − 1, compute:
∗ δθti = ∑K

k=1[P (Ωi,k)M ti,kεti,k]
– [δθ]j =

∑N−1
i=0 (N−i)wj,ti [δθti ]j∑N−1

i=0 wj,ti (N−i)
– Update θ ← θ + δθ
– Create one noiseless rollout to check the trajectory cost R = φtN +∑N−1

i=0 rti .
until until convergence Rt+1 ≈ Rt

4.5 Incorporating Reinforcement Learning with Dynamic
Movement Primitives

So far all the algorithms presented have been used to improve an already known
policy. The policy, in this thesis, is encoded as a DMP as explained in Chapter 3.
However, nothing has been said about the connection between the DMP and RL, or
more exactly between the DMP and the parameter θ which is to be optimized to
improve the already known policy. Therefore, a connection has to be established,
which in the case of having only one DMP is quite trivial as the policy parameter
θ can be interchanged with the shape parameters (weights) in the forcing function
given in Equation (7). The reason behind this is that the weights are responsible
for defining the spatio temporal path of the movement. Thus, by adding noise to
the learned weights a new path will follow. By repeatedly performing rollouts in
this manner, and subsequently updating the weights according to the algorithms the
known policy will improve.
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4.6 Evaluation of the Policy Improvement Algorithms PoWER
and PI2

In this section the algorithms previously presented will be compared. Based on the
results one algorithm will be chosen to improve the initial policy generated from a
DMP and performed on a robot for the sake of playing the ball-in-a-cup game.

First of all, the PoWER and PI2 algorithms cannot be easily compared. This
follows from the different definitions of the reward function. In the PoWER algorithm
the immediate reward function has to be an improper probability, restricting it to
only positive rewards which also needs to integrate to a constant value, whereas no
such restrictions exists for the PI2 algorithm. Therefore, the reward function in the
PoWER algorithm needs to be transformed, usually in a nonlinear fashion, to be
able to handle immediate rewards as defined for the PI2 algorithm. Otherwise, both
algorithms update the policy in a similar manner, and use interchangeable policy
perturbation methods.

One case where both the PoWER and the PI2 algorithms were compared was in
[95]. The task to execute was to move from one point to another through a predefined
via point. The movement was generated from a one DoF DMP, and the algorithms
role were to optimize the policy parameters. The results can be seen in Figure 17.
From this figure it can easily be seen that both the PoWER and PI2 algorithm
perform better than the other algorithms discussed in this chapter. However, it is
extremely difficult to distinguish between the performance of the PoWER and PI2
algorithm because the resulting policies have almost the same values. Thus, in this
case, it is impossible to determine which is better. With this in mind, selecting one
over the other based on their performance alone is not possible in this case. The PI2
algorithm could be chosen for the simpler reward function definition. However, as
mention previously in this chapter, the PoWER algorithm has been used before for
policy search in the ball-in-a-cup game [50] and is therefore chosen to be implemented
to see if comparable results can be obtained.
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Figure 17: The performance of the PoWER algorithm drawn as a dashed yellow
line and the PI2 drawn as a red line are indistinguishable. In the left image a) both
algorithms follows a policy which fulfils the via point restriction at 300 ms and ends
up at the correct position at about 0.5 s. In the right image b) the learning curve is
presented. The number of rollouts are averaged over 10 runs per algorithm. (Source
:[95]).
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5 Testbed
The experiments outlined in this thesis will be evaluated on a real robot. Thus, this
chapter will be devoted to explaining the Hardware (HW), Middleware (MW) and
Software (SW) used to realize the experiment. The HW, MW and SW parts consists,
respectively, of the robot and all its peripheral, the already available software, and
the chosen software architecture and its functions. Combined, these parts completes
the testbed capable of robot sensing and control in hard real-time.

5.1 Overview
The testbed, from HW to SW, used in this thesis constitutes of three components, a
Kuka Light-Weight Robot (LWR), a KUKA Robot Controller (KRC), and an external
computer. These components are all integrated together as depicted in Figure 18.
The reason behind the chosen infrastructure is to allow for hard real-time control of
the robot. As the HW, MW, and SW all are important for the overall success of the
system they will be explained in more detail in the following sections, starting with
HW, then MW and last SW.

Figure 18: The overall view of the system. As is depicted is the three components:
KRL, KRC and the external computer, as well as the intra-connection between each
component. (Source: [87]).
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5.2 Hardware
Industrial robots are gaining popularity each year mostly due to their high usability
and fairly low cost. The essence of an industrial robot is their ability to repetitively
perform accurate motions at high speeds, while at the same time be robust and
durable [2]. To uphold all of these characteristics, the industrial robot is designed to
have a high stiffness. The high stiffness unfortunately affects the mass to payload
ratio in a negative way. Furthermore, they also require the environment to be more
or less static, requiring predefinition of all parts and excluding potential collision
with other objects and humans. With all of these advantages and disadvantages in
mind, the industrial robot surly have its place in the modern world. However, as
more and more attention is placed on human-robotics interaction, which the learning
from demonstration framework is a prime example of, a safe and highly controllable
robot is required. Regarding safety, the robot needs to be able to detect and react to
collisions, whereas controllability enables a human to easily interact with the robot
by, for instance, grabbing it and guiding it to the right location.

As a result of the need of human-robot interaction, new robots have been developed
to overcome the limits presented by the industrial robots. One of these robots is
the KUKA LWR. What sets KUKA aside from industrial robots is the integrated
Force/Torque (F/T) sensors in every joint [12]. With the aid of these F/T sensors
collisions can be detected in real-time and the robot can perform complementary
actions, as completely stopping the movement, before any harm is done. The collision
detection in combination with a light weight and kinematic redundancy enables the
robot to be used cooperatively by humans without endangering their safety. This
enables cutting edge research such as learning from demonstrations. Albeit the state
of the art characteristics presented in the KUKA LWR, it is still far from as highly
functional as the human arm which can detect vibration, temperature, pressure, and
much more thanks to its multimodal senses.

As the KUKA LWR 4+ possesses all great features for human-robot interaction
it was chosen as the HW performing the experiments in this thesis. It was designed
with research in mind [12]. The robotic arm has a slim body and seven elastic joints
enabling it to effectively move in 7 DoF (see (1) in Figure 19). Moreover, each joint
is integrated with an F/T sensors and the overall repeatability of the arm is ±5 mm
[12]. It can handle a payload of 7 kg while its own mass is only 15 kg. Another
important characteristic of the robot is the ability to actively set the compliance on
either joint or Cartesian level. By setting the robot compliant in a specific Cartesian
direction it can be moved or pushed in that direction without resistance. In this
thesis the movement was restricted to a plane, thus the robot was compliant in two
Cartesian directions but non-compliant in the third. All in all, the slim and round
body, collision detection and adaptive stiffness settings makes the KUKA LWR 4+ a
suitable HW to implement the LfD framework on.

However, the HW setup does not only consist of the LWR but also on six other
components, namely the KRC, the ball-in-a-cup game, the external computer, the
KUKA Control Panel (KCP), and the kinect sensor. These components and their
mutual connection are illustrated in Figure 19.
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The ball-in-a-cup game was built from an aluminium can with a height of 5.0 cm
and a diameter of 8.5 cm. The string was attached through a hole in the bottom of
the can. A wooden ball with a weight of 10.35 grams was attached to the other end
of the string.

The KRC includes a power unit, a control PC, a connection panel, and safety
logic. The control PC is the main user interface to the robot and runs Windows
XP. The user interface is made up of a preinstalled editor for writing programs in
the KUKA Robot Language (KRL). The main purpose of the KRC is to ensure safe
operation when controlling the robot.

The external computer facilitates an 8-core processor and runs Ubuntu1 extended
with the real-time kernel Xenomai. The external computer eases the software
development as it provides the ability to write the software which controls the robot
in another programming language than KRL (mainly C++ or Python). This is
realized by utilizing the Fast Research Interface (FRI) developed by KUKA and The
Deutche Luft und Raumfarth.

For the tracking of the ball and the cup a Kinect sensor2 was used. This stereo
vision camera can capture both RGB images and the point cloud of the scene, thus
enabling object identification through colour segmentation and distance calculation
from the point cloud. The frame rate of the camera depends on the resolution of the
image. As tracking of the object at high speed is needed the highest frame rate was
chosen which was 30 frames per second. At this frame rate the image resolution was
640× 480 pixels.

Figure 19: The hardware included in the testbed. (1) depicts the KUKA LWR4+,
which is attached to the ball-in-a-cup game (2). The LWR is also connected to the
KRC (3) which in turn is connected to both the KCP (4) and the external computer
(5). The external computer is in turn connected to the Kinect sensor (6).

1Version 12.04 LTE
2Version 1, model 1414
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5.3 Impedance Controller
To enable both teaching and execution of the movement in a plane, the Cartesian
impedance controller of the KUKA LWR is used. The Cartesian impedance controller
steers the arm by working in conjunction with the individual torque controllers in
each joint. The controller is implemented as a spring/damper system along each
axis of rotation and translation, where the stiffness and damping factor can be
dynamically set for each of these [33].

The control law of the Cartesian impedance controller implemented in the LWR
defined in [85] is the following

τcmd = J
′ (kc(xcmd − xmsr) +D(dc) + Fcmd) + fdynamics(q, q̇, q̈),

where J ′ is the Jacobian matrix responsible for converting the forces at the end-
effector into joint torques (τcmd) commanded to the robot. The spring is represented
with the factor kc(xcmd−xmsr), where kc is the stiffness factor, xcmd is the commanded
Cartesian position of the end-effector and xmsr is the measured position of the end-
effector. The damping is represented by D(dc), where dc is the damping factor.
The commanded Cartesian position, stiffness factor, damping factor as well as the
superposed Force/Torque factor Fcmd can be dynamically set by the user to the
robot. The last factor fdynamics(q, q̇, q̈) counteracts the gravity torques, centrifugal
and Coriolis forces [10].

The control law basically integrates two different control modes: one for position
and one for force. If no commanded force, represented as Fcmd, but only a commanded
position of the end-effector is sent to the robot the commanded position of the end-
effector is reached as a spring/damper. On the other hand, if only the commanded
force is sent to the robot, the robot arm is controlled by moving it in the same
direction as the commanded force vector and exerts a counteracting force if some
external force is applied to the robot. In some cases the commanded force Fcmd and
the force generated from the spring system Fk = kc(ccmd − xmsr) can cancel out each
other. In such a case, it can happen that neither the positional or the force profiles
can be followed with high accuracy resulting in a poor reproduction of the learned
task.

If both the commanded force and stiffness factor is set to zero the robot can be
freely moved in space as the gravitational and frictional forces are counteracted by
the robot. In the teaching part in this thesis, the commanded forces are set to zero
and the stiffness is set high in all directions except in the y- and z-directions as this
enables the teaching of the robot in only a plane. On the other hand, when the
learned movement is to be executed the stiffness is set to be high in all direction
as the relative displacement kc(xcmd − xmsr) between the desired Cartesian position
and the actual position is influenced by the stiffness parameter, where a higher value
will result in higher accuracy and vice versa for a lower value [33]. However, setting
the stiffness value over or close to the maximum values indicated in [33] can result
in a jerky execution.
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5.4 Middleware
The MW can be visualized as a bridge between the software already developed or to
be developed and the actual hardware. The main point of utilizing MW in this thesis
is that it eases the development of new software by providing a simple approach to
communicating with the robot in hard real-time. Furthermore, the MW also consist
of a large library of already developed code, for example image processing tools,
which reduces the need to develop new code. In this thesis the MW consists of the
Robot Operating System (ROS)3, the Open Robot Control Software (Orocos)4 and
the FRI.

5.4.1 ROS and OROCOS

ROS and OROCOS eases the development of new software by providing a lot of
already built in robotic software. The reason for using OROCOS is the hard real-time
constraints which it can handle but ROS cannot. On the other hand, ROS comes
pre-packed with a lot more developed software than OROCOS.

The general goal with the OROCOS project is to develop robot control software
which are flexible, modular and not bound a specific platform or robotic device [15].
OROCOS facilitates an event triggered generic core [86]. A program written in
OROCOS consist of one or several components and one deployer. The structure
of a component can be seen in Figure 20. It facilitates input and output ports to
communicate with other OROCOS components as well as operations and operation
callers. As the name suggests, input ports are ports where data is written into the
component and output ports are ports to which a component can write data to for
other components to read from. Operation callers calls an operation from another
component. A component is executed in a single thread written in plain C/C++
or in the Orocos Program Script (OPS) [86]. The deployer file can be visualized as
the bridge between all the components. In this file all the OROCOS components
which are to be used are specified and started. Furthermore, the individual activities
of each component alongside their connection to the other components are defined.
The activities can be defined as periodic, non-periodic or slave activities where the
execution starts when other activities starts.

In contrast to OROCOS, the middleware also depends on ROS for non hard
real-time tasks. The goal with ROS is to ease the development of robotic software
by providing an extensive library of already developed software, not requiring the
programmer to “reinvent the wheel” [67]. ROS has gained an immersive popularity
in the robotics society and can be considered the de facto MW to be used in robot
programming [26]. ROS programs are implemented as nodes with a publish-subscribe
communication scheme and intra communication with other ROS nodes are realized
by writing messages of a specific type to a predefined topic name [67]. Other ROS
nodes, even within the same network, can then read the data from the topic names
by subscribing to them.

3The ROS version used was Groovy
4The version used was 2.6
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Figure 20: An OROCOS program is called a component. Each component provides
operations and operation callers, which can be thought of as methods. A component
also facilitates input and output ports to communicate with other orocos components.
(Source: [86]).

To integrate the hard real-time functionality of OROCOS with ROS, topics from
ROS nodes can not only be read by other ROS nodes but can also be streamed into
OROCOS ports or vice versa. This feature is still limited, however they do fulfil the
requirements for the software used in this thesis as it is mainly developed in ROS.
The reason for implementing most of the software as ROS nodes was that all the
components with hard real-time requirements had mostly already been developed.

5.4.2 Fast Research Interface

The FRI was implemented as a result of a requirement analysis together with the
robotic society in [85]. The questionnaire revealed what main purpose the FRI
should fulfil. These were: a low-level real-time connection with the KRC at rates
up to 1 kHz, freedom to integrate it with an operating system of choice, and a
possibility to use the already developed controller in the KUKA LWR. Functions
which has already been integrated in the controller are teaching, control mode selection
(position or impedance), safety systems and much more [85]. As these functions were
implemented in the KRL, FRI grants access to them from another programming
language, effectively removing the need to reprogram them. An overview of the
system architecture of the FRI is presented in Figure 21 where the connection between
the FRI running on the KRC and the FRI Remote running on the external computer
is established though a UDP connection.

The interface which grants access to a low level control of the robot is implemented
as a state machine and accommodates two different modes: the command and the
control mode. In the control mode the external computer can monitor the robot but,
as the names suggests, the controlling of the robot is only possible in the commanding
mode. In this mode the remote computer can receive sensor readings and status
reports from the robot, set specific parameters (e.g. stiffness and damping), request
the control mode of the robot, and command the robot to a specific position.
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Figure 21: An overview of the system architecture of the FRI. (Source: [85]).

When the FRI is initially started the mode is set to control mode. If the user
wants to switch from the control mode to the commanding mode a handshaking
between the remote computer and the FRI needs to be fulfilled. The handshaking
is realized by following some specific steps outlined next. As the FRI is started it
enters the monitor mode and while being in this mode packages are sent from the
KUKA controller to the remote computer. The remote computer then has to answer
to these packages by sending answer packages within a predefined time frame. If
the answer packages are received by the FRI within the predefined time frame the
handshaking is considered successful and the mode can be switched.

5.5 Software Architecture
The software in this thesis was designed as a modular framework as this will ease the
possibility of reusing it for other applications. Most of the software used in this thesis
had already been developed by Franz Steinman for his master thesis [87]. However,
others have been improving the code since the first release, for example, the initial
software design did not set the kernels of the DMP equally in time, but this is solved in
the improved software. Although others have contributed and improved the code, the
basic architecture has not changed much. As the architecture is thoroughly explained
in [87], it will not be covered in great details here. However, some modifications were
needed to adapt the already implemented code to work for the application defined in
this thesis. Thus, the focus of the next chapters are to discuss these changes as well
as to give a thorough explanation of the software which were developed in this thesis.
The developed software comprehends the following classes: vision, Logic, PoWER,
Reward, and MultivariateGaussian. The first three classes are implemented as
ROS nodes while the latter two are standalone C++ classes.

The whole chain for acquiring a new skill can be split into four phases: demonstra-
tion of the skill, learning the skill, executing the skill, and improving the skill. This
chain can be seen in Figure 22. The already developed software comprehends the
recording, learning and execution phase. Thus, these phases together with the basic
components, enabling the actual communication with the KUKA LWR, are explained
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in the next two chapters. After this the newly developed software is introduces.

Figure 22: For the robot to learn a trajectory and subsequently improve upon it four
phases needs to be completed in sequence. The first two parts, demonstration and
learning, is only done once, whilst the last two, execution and reinforcement learning
is executed iteratively as to improve the learned model.

Basic components

The basic components can be seen in Figure 23. The OROCOS components FT
Sensor, KUKACommander, KUKACommanderROS, FRI ServerRT, and the KRC compo-
nent FRI Control all enables straightforward control of the LWR. First of all the
FRI SeverRT acts as a bridge between the OROCOS components and the KRC, and
is responsible to send the correct data to the correct ports of the KRC over a UDP
protocol. To enable easy activation of the basic services of the LWR, for instance
activating gravity compensation, the KUKACommander is used. To simplify the shar-
ing of data between ROS nodes and OROCOS components the KUKACommanderROS
ROS node was developed in [87]. This ROS node is foremost responsible of ex-
posing the services of the KUKACommander to other ROS nodes. These services are
activated by simply publishing or subscribing to predefined ROS topics set in the
KUKACommanderROS.

KRCOrocos

KUKACommander

FRIServerRT

KUKACommanderROS

FRIControl

FTSensor

Figure 23: These OROCOS components were already implemented as to ease the
communication with the LWR.(Source: [87]).
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Recording Phase

To acquire a skill through a human demonstration only one component of the basic
framework is used, namely the ROS package Recorder_Jens. The workflow of
the recorder node is visualized in Figure 24. When the node is initiated it asks
if the movement should be recorded on trajectory level, meaning that the node
starts subscribing to topics which contains data corresponding to the position and
orientation of the end effector. When the setup is finished, the KUKA LWR then
moves to a previously specified position where the demonstration will start from. As
this position is reached, the arm is set stiff in the x-direction as well as the orientation
around x, y, and z. This restricts the robotic arm to only be moved along the y-
and z-directions. As a result, the movement is only learned in a plane. The actual
recording of the movement is started when the user presses ENTER. Now the arm can
be moved and data is published by the FRIServer at a rate of 100 Hz and stored
into a ROS bag file. When the demonstration is finished the recording is terminated
by pressing ctrl+C. The user then has the opportunity to either record another
demonstration or terminate the whole node. If another recording is of interest, the
whole procedure is reset from the point of moving the arm to a predefined position.
Each demonstration is stored in ROS bag files and will later be used for learning a
representation of the movement.

In comparison to the previously implemented Recorder in [87] the Recorder_Jens
differs in two aspects. First, instead of activating the gravity compensation mode to
allow the user to move the arm to an arbitrary starting position, it instead moves to
a previously defined one. Secondly, the arm is restricted to move in only a plane.
The reason for restricting the movement to a plane is that this alleviates the need for
using two cameras, one above and one perpendicular to the cup. As will be explained
in Chapter 6, the feedback given to the reinforcement learning algorithm is based
on the distance between the ball and the rim of the cup when the ball crosses it
with a downward motion. This distance can only be measured in one direction when
one camera is used. If instead the movement had been free in space, two cameras
would be necessary, one for tracking the movement of the ball and the other one for
recording the distance in, for example, both x- and y-directions.

Figure 24: This figures shows the steps to be fulfilled when recording a demonstration.
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Logic
To incorporate the reinforcement learning and execution of the DMP in a simple
fashion the Logic class was developed. This class is implemented as a ROS node and
is responsible for learning the initial DMP, then executing the DMP and subsequently
calling the RL for reweighing the DMP. The functionality can be seen in Figure
22. The function of the node can be thought of as a state machine which follows
the workflow depicted in Figure 25. The first step performed is to read the correct
input parameters, such as the number of kernels, the demonstration time τ , the
stiffness parameter αx, along with the file path to the ROS bag file where the
demonstration is stored. The bagfile contains the pose of the end effector at different
time instances. This file name is then passed on to the Learner class which learns the
DMP according to Equation 14. As the learning is finished, the initial parameters for
initializing the covariance matrix used for sampling noises is created. After this the
ROS node vision is started. This node is responsible for tracking the ball and the
cup and calculate the distance between the ball and the cup. When these steps have
been performed, the noises are sampled. The noise together with the learned DMP
parameters are then passed on to an OROCOS component in charge of calculating
and sending the next state to the FRI.

When one execution of the DMP is finished, the reward class exp_reward is called
with the distance from the vision node as input. This reward class then returns
the calculated reward which is passed on together with the sampled noises to the
reinforcement learning node PoWER. This nose is then responsible for calculating the
updated parameter values which are to be added to the current weights of the DMP
as well as the optimization parameter β, which will be explained in more detailed in
Chapter 6. The whole procedure is then either restarted from the execution phase or
terminated if either the user terminates the node or a predefined amount of executions
has been reached.

Figure 25: This figure shows the work flow of the Logic node.
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Reinforcement Learning

The recording and learning phase of the software produces an initial DMP with
all the necessary parameters. However, in this thesis the initial DMP has to be
improved with subsequent reinforcement learning. Thus, the executor interface and
the reinforcement learning has to work together. As discussed in the previous section
the Logic node executes the initial DMP once and then the new updated parameter
values are calculated in the PoWER node.

As the reinforcement learning node PoWER is only called after an execution of the
movement it was sensible to implement is as an ROS action server node. Thus, the
node only computes the necessary updates if it is being called from the Logic node.
The message to the node is the recently sampled noise and received reward. The node
then calculates the update parameters according to Algorithm 4 and sends it back
as the request. In this way the user can choose when and when not to call the power
algorithm. Thus, executing evaluation trials without adding noise or reweighing the
parameters is possible.

Visual Tracking

The reward given to the reinforcement learning is the distance from the centre of the
ball to the rim of the cup when the ball crosses it with a downward motion. This sets
up two constraints for the system: first it has to be able to track the ball to know
when it is in a downward motion, and secondly it needs to calculate the distance
from the ball to the cup when it crosses the rim of the cup.

As previously defined, the setup only consisted of one camera and the movement
was restricted to a plane. The visual tracking was implemented as a ROS node called
vision. This node subscribes to the RGB and depth images published by the Kinect
camera. It then publishes the distance from a red object to a green object as soon
as the ball crosses the cup with a downward motion. When the vision.py node
is launched it first calculates the depth to a green object (the cup). This depth is
needed to convert the pixel distance between the cup and the ball to SI units.

To enable the distinction of the ball and the cup from each other as well as from
the background, colour segmentation is used. First of all, the images are read in as
Red Green Blue (RGB) images. These images are then converted into Hue Saturation
Value (HSV) space to simplify the colour segmentation. To further simplify the colour
segmentation, the ball is coloured in a sharp red and the cup in a sharp green colour.
The colour segmentation can be seen in Figure 26.

When the two objects has been segmented they are tracked with a blob detector.
The blob detector is responsible for calculating the topmost centred pixel value of
the cup and the centre of the ball in the current and in a previous frame. Based on
this information a crossing can be found by checking if the centre of the ball crosses
the rim of the cup in the two to fourteen consecutive frames. The reason for keeping
track of the centre of the ball in more than just the previous fame is that the camera
might loose track of the ball for a couple of frames and thus an interpolation is done
between several frames. If a crossing has been found, the distance between the ball
and the cup is calculated as shown in Figure 27.
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(a) In the figure the blue dot is the center
of the red ball and the black dot is the
center of the rim of the cup.

(b) This figure is a colour segmented ver-
sion of the same figure visualized to the
left. The segmentation is based on the
hsv colours of both the red ball and the
green cup.

Figure 26: A example of the colour segmentation of the ball and the cup.

Figure 27: This figure shows how the distance d is calculated. As frame 1 depicts a
previous instance in time this means that the ball is falling with a downward motion
and also crosses the rim of the cup. Then a line is interpolated between the centre of
the balls, and the distance between the cup and the ball is the distance between the
interpolated line and the point of the rim of the cup in frame 1.

Helper classes
To ease some of the computations, two helper classes the MultiVariateGaussian
and the reward were implemented. These are implemented as stand alone C++
classes. Hence to use them, an object of each class needs to be created inside the
ROS nodes.

The first class, MultiVariateGaussian, implements a multivariate Gaussian
distribution. To sample noise. the class is called together with a predefined covariance
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matrix. The second class, reward is a base class for different reward functions. In
this thesis the reward is the inverted exponential distance from the ball to the rim of
the cup, and thus a derived class reward_exp is created from the base class reward.
For different problems, where the reward function will vary from the one used here,
a new derived class with its own reward function needs to be implemented.

5.6 Discussion
The main focus of the implementation is to provide a framework for both learning,
executing and improving the learned skill. However, the software was also developed
to be as modular as possible. This is foremost recognized as the reinforcement
learning (PoWER), visual tracking (vision.py) and Logic are all implemented as
separate ROS nodes. The Logic node is the main part of the software as this routes
all the information in a sensible way. The best practice to reuse the code is to modify
the Logic node. If another reward function is to be used, one can easily be derived
from the base class reward. However, the system is known to have the following
three significant limitations: the visual tracking of the ball, the restriction of the
learned movement to a plain, and the inaccuracy of the impedance controller.

The first limitation originates from visually tracking the ball. The ball can
sometimes move so fast that the system do miss the ball completely. The reason for
this is that the camera is not physically able to capture sharp enough images of the
fast moving ball. This problem can be solved in two ways: either a Kalman filter
can be set on the ball to help the tracking, or a camera with a higher framerate can
be used.

The second limitation is bound to the restriction of the movement to a plane. As
stipulated previously, to allow the movement to be free in space two cameras have to
be used, as this enables for calculating the reward based on the distance from the ball
to the cup in more than one direction. Steps were taken to alleviate this problem,
and an improved ROS node of the original vision was actually implemented. This
node is supposed to read data from two cameras at the same time. However, the
problem was the testing part as apparently reading data from two Kinect cameras
at the same time was impossible with the used ROS version. This problem can be
solved by updating ROS.

The last limitation is bound to the inaccuracy of the Cartesian impedance
controller. As will be presented in the next Chapter, the movement was only learned
in two directions and the desired position of the third direction was kept constant.
However, the difference between the measured and the actual position of the end-
effector showed that the controller was not able to perfectly follow a position set
to a constant value. This inaccuracy could sometimes lead to a resulting optimal
policy where the generated trajectory induced such a movement on the ball that it
was thrown either in front or behind the cup. To alleviated this problem the joint
position controller should be used instead, but for this to work the movement has to
either be learned in joint space or inverse kinematics has to be used to transform the
desired Cartesian position of the end-effector into positions of each joint.

All in all, the developed software made it possible for the aforementioned eval-
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uation presented in the next chapter. Moreover, the software is modular and the
reinforcement learning is easy to integrate for other applications as well. The limita-
tions of the system are known and can be solved by improving the used hardware
and further developing the software.
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6 Experiments and Results
To study if the proposed PoWER algorithm can improve an initially taught skill (in
this case how to play the ball-in-a-cup game) encoded as a DMP, experiments on
actual hardware are needed. Thus, this chapter will be devoted to the experiments.
However, before conducting the experiments, the parameters (αz, βz, αx, and the
number of kernels) have to be set. Furthermore, to prevent execution of potentially
harmful policies on the actual hardware, for example jerky trajectories or trajectories
which require high instantaneous acceleration, a thorough simulation was conducted.
In this simulation the initial motor primitives were learned, based on data from
one demonstration on real hardware, and the parameters were perturbed to see the
effect on the reproduced trajectory. Based on the results from the simulation, the
exploration rate for the subsequent RL is defined.

One experiment on the actual hardware was conducted. In this experiment the
goal was to reproduce the results obtained in [50], as well as study the effect of using
several initial rollouts or none at all before starting to reweigh the parameters. To be
able to examine this, an initial demonstration was showed to the robot which in turn
needed to learn a representation of the movement as a DMP and then subsequently
apply RL to improve the learned skill.

In the next section the game, its consecutive states as well as reasoning for
choosing this game in the first hand is discussed. After this the initial motor
primitive is learned and tested in a simulation built in MATLAB. This is conducted
as a feasibility study, and based on the results the actual experiments on the real
robot can be conducted. The chapter is concluded with a thorough discussion of the
results.

6.1 Ball-In-A-Cup Game
The Ball-in-a-cup game, also known as Balero, Bilboquet or Kendama [1], consists of
a cup, a ball and a string . In this thesis, the cup had a height of 5 cm and a diameter
of 8.5 cm, while the ball weighed 10.3 grams. The ball hanged down vertically from
the cup through a string which was attached to the bottom of the cup. The length
of the string was set to 42 cm.

To play the game, the cup should be held in one hand only (or attached to the
end effector of the robot) and in a single movement the player should move the cup
to induce a movement of the ball through the sting, then pull the cup upwards and
catch the ball with the cup. For the movement to be successful, both speed and
accuracy has to be very high and precise.

The game has been used in many previous studies in robotics [50, 79, 80, 93]
and can thus be seen as a benchmark problem in robotics. Moreover, learning to
play the game is even challenging for children who usually succeed in bringing the
ball into the cup for the first time after 35 trials [48]. With all this in mind, this
game sets a standard for how well the implemented system is able to learn a complex
task. Because of these reasons, the ball-in-a-cup game was selected as the game to
be learned in the experimental parts in this thesis.
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The state of the system is defined as the pose (orientation and position) of the end
effector and the position of the cup, both in Cartesian coordinates. For controlling
the robot the Cartesian impedance controller (explained in Section 5.3) was used.
The robot can move in six degrees of freedom, three for position (x, y and z) and
three for orientations (Rx, Ry and Rz). As the movement was restricted to a plane
the commanded position in x-direction was set to constant. The other positions and
orientations were represented by an individual DMP. Noteworthy is that orientation
is represented as quaternions and thus the number of learned DMP was six altogether:
one for the y- and z-direction and one for the four quaternions qx, qy, qz and qw.

The final reward, defined in [50], was calculated as the distance between the rim
of the cup and the ball when the ball is in a downward motion

r(t) =

exp(−αd2), if t = tc,

0, otherwise
(36)

where tc is the time instant when the ball crosses the rim of the cup with a downward
motion, and d is the distance between the rim of the cup and the ball (see Figure
27). The scaling parameter α was set to 100. This reward was then passed on as
one of the input parameters to the PoWER algorithm. The higher the reward is the
closer the ball is to the rim of the cup and vice versa. If, however, the ball does not
cross the rim of the cup with a downward motion the received reward is zero. If this
was not a criteria, the robot might learn a policy where it hits the bottom of the cup
with the ball.

The number of kernels had to be sufficient to produce an initial policy which got
the ball over the rim of the cup and thus receive a reward. From trial and error, 55
kernels were enough to fulfil this requirement. As the movement was restricted to a
plane, the primitives which were responsible for the movement in this plane, namely
the ones in y- and z-direction, were perturbed. Therefore, the number of parameters
(weights) which needed to be fine-tuned by the RL algorithm was 110. This amount
is almost half of what was used in [50], where they used 233.

6.2 Evaluation in Simulation
Before implementing the reinforcement learning algorithm on the actual hardware, a
simulation of the initially learned representation of the movement was conducted.
The simulation was performed in MATLAB. However, for initializing the simulation,
data had to be collected from one demonstration on the real hardware. Thus, one
successful demonstration, where the ball went into the cup, was performed on the
KUKA LWR4+ and the data gathered was the Cartesian positions and orientation
of the end effector at each time instant. Based on the collected data, both velocity
and acceleration was evaluated, and the initial DMP was learned as in Equation
(14). As the initial DMP was learned, the unperturbed and perturbed policies were
simulated. To perturb the policy, noise was added to each weight of the DMP. In
this way the new policy will differ from the original one by the amount of the added
noise. However, as noises can be generated differently, the resulting perturbed policy
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will also differ. Thus, the main task of the simulations is to find out safe approaches
for generating noise.

6.2.1 Simulation with Uncorrelated Noise

In the first simulation noise was sampled from a diagonal covariance matrix Σ where
each entry on the diagonal σi,j corresponded to the DMP index i and kernel index
j. As there are 55 kernels in each DMP the covariance matrix is a 55× 55 matrix.
The number of different covariance matrices is directly dependent on the number
of motor primitives which are to be perturbed, and in this case it was two (one in
y- and another one in z-direction). Each variance σi,j was initialized as the median
of the weights corresponding to the i-th motor primitive. The noises ε were then
sampled from a multivariate zero mean Gaussian distribution ε ∼ N (0,Σ) and can
be seen in Figure 28a. The resulting perturbed trajectories in y-direction can be seen
in Figure 28b. From the generated trajectories it can clearly be seen that there exist
large deviation in the desired position which, in turn, will lead to large accelerations
and a jerky movement. The large accelerations are not possible to execute on a real
robot due to the physical limitations of its actuators and the jerky movement will
make the robot unable to play the game successfully as the overall movement to be
executed has to be very smooth for the ball to end up in the cup. In addition to
this problem, the large deviations in position in both the beginning and end of the
trajectory is unfavourable as the overall smoothness of the generated trajectory is
dependent on the trajectory being smooth in these parts.

Based on these results another approach where the sampled noises generated
smooth trajectories was needed. The proposed approach was to sample correlated
noise and in the next section it is tested.
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Figure 28: Figure (a) visualize the noise which were added to each corresponding
kernel for one rollout and (b) is the corresponding trajectory. It is worth pointing
out that the noise is multiplied by 10 for visualization reasons.

6.2.2 Simulation with Correlated Noise

In the second simulation the selected covariance matrix had to solve the problems
which are inevitably inherited from uncorrelated noise. The new covariance matrix
had to fulfil the following characteristics: the sampled noise have (to some extent)
be correlated, large accelerations are to be avoided, and perturbations in both the
initial and final part of the trajectory should be low. One possibility to generate
such noise is presented in [43, 44, 77] where they force the covariance matrix Σ to be
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inversely dependent to the sum of squared accelerations along the trajectory θTRθ,
where θ are the shape parameters and R is a quadratic control cost matrix. The
quadratic control cost matrix R is defined as

R =
K∑
k=1

wk ‖Ak‖2 (37)

where Ak is a differencing matrix, wk is a weight factor, and k is the order of
differentiation. As stipulated before, we are interested in squared accelerations; thus
k = 2 and all weights, except w2 = 1, are set to zero. The resulting R is then

R = ‖A2‖2 =



1 0 · · · 0
−2 1 · · · 0
1 −2 · · · 1
... ... . . . −2
0 0 · · · 1

 . (38)

The noises ε are then sampled from a zero mean multivariate Gaussian distribution
with the covariance matrix Σ = R−1 as ε ∼ N (0,R−1). The noises sampled from this
distribution are displayed in Figure 29a. By structuring the covariance matrix in this
fashion, the sampled noises depends on both the previous and next value. Moreover,
this structure also penalize large accelerations and keeps the noises added to the first
and last weights considerably small. Although the sampled noises follows the defined
characteristics, one main problem still remains – how to reduce the impact of the
noise when the policy has converged? One possible solution, which was proposed in
this thesis, was to add an optimization parameter β to the covariance matrix Σ as

Σ = βR−1. (39)

As the parameter β increases the amount of added noise decreases. Hence, the
magnitude of the added noise is only dependant on one parameter, namely β. Fine-
tuning this parameter differs from application to application. In this thesis it proved
to be favourable to set the magnitude of the β parameter as

β = exp
N∑
i=0

r2
i , (40)

where ri belongs to the i-th reward and the sum is taken over the N best rewards.
In this way, the added noise is effectively reduced several order of magnitudes as β
increases (Figure 29b).

Now as there exist a method for reducing the effect of the added noise as the
policy converges, one problem still remains and that is initializing the variance of the
covariance matrix. The initialization of the variance is an important factor as this
regulates the magnitude of the initially sampled noise when the β parameter is kept
low which is the case when the learning starts. The sampled noises, which are to be
added to the weights, needs to be considerably large from time to time to actually
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change the resulting trajectory, otherwise the policy will either never converge or
only converge after a large number of trials, which is not an effective strategy. On
the other hand, the sampled noise cannot be too large either as this might result in
large deviations in the trajectory and subsequently in large accelerations which the
robot cannot physically execute.

Intuitively, with all this in mind, the initialization of the variance for every
covariance matrix should be bound, in some sense, to the weights of each motor
primitive. This reasoning resulted in the complete covariance matrix

Σi = γiβR−1, (41)

where γi is the initialization parameter. The magnitude of the γi parameter differs
from application to application. In this thesis a proper value was found through trial
and error and were 1.4 times the inverse of the standard deviation of the weights
in y-direction, and 0.6 times the inverse of the standard deviation of the weights in
z-direction.

As previously mentioned, these noises are also sampled from a multivariate zero
mean Gaussian distribution with the covariance matrix Σi, i.e. N (0,Σi). The
sampled noises corresponding to Equations (38) and (41) are displayed, respectively,
in Figures 29a and 30. In the latter figure the sampled noises do indeed fulfil all
the characteristics which were previously defined. Possible trajectories which can be
governed by this form of sampled noise are visualized in Figure 31. It can clearly
be seen that the resulting trajectories are smooth, i.e. no sudden deviations in
position, and the initial and final positions do not differ much from the demonstrated
trajectory. With all this in mind, the trajectories in Figure 31 shows that sampling
the noises according to Equation (41) results in trajectories which are feasible for the
robot to execute. Thus, this was implemented and executed on the actual hardware
and the acquired results are presented in the following section.
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Figure 29: Figures (a) and (b) both depict correlated noises which has been sampled
from a multivariate Gaussian distribution. However, they differ with respect to the
β parameter.
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Figure 30: The figure resembles 20 samples drawn from a zero mean Gaussian
distribution with the covariance matrix βΣi where β = 1 and Σi is initialized
according to the weights of motor primitive in y-direction. The noises are several
magnitudes larger than the original in Figure 29a. This noise corresponds in larger
extent to the size of the weights of each motor primitive, and by increasing the β
parameter the effect of the noises washes out as can be seen in 29b.
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Figure 31: The red trajectory is the original demonstrated one. The other trajectories
are simulated with correlated noise added to each parameter, where β = 1 and Σi is
initialized for the motor primitive in y-direction.

6.3 Imitation Learning for the Ball-in-a-cup Game
In this section, experiments conducted on the actual hardware are presented. Based
on the previous results, the generated noise, which are added to the weights of the
original DMP, was sampled from a multivariate zero mean Gaussian distribution
with a covariance matrix as in Equation (41). As previously established the number
of kernels was 55 and the importance sampling for calculating the new weights used
the 8 best previous rollouts.

Only one experiment was conducted and it examined if a robot can learn how
to play the ball-in-a-cup game by imitation learning with subsequent reinforcement
learning. It was split into two parts, case A and case B, where case A used eleven
initial rollouts before starting to reweigh the DMP and case B used zero. By
comparing the number of initial rollouts the following characteristics are compared:
does the number of initial rollouts affect how often the robot learns the optimal policy
as well as the convergence rate, i.e. how fast an optimal policy can be found? To be
able to answer these questions reliably, fourteen trials for each case were conducted.
The policy was said to converge if the ball went into the cup five times in a row.
On the other hand, the robot was said to be unable to learn for one trial, if in ten
consecutive rollouts not even one made it up to the top eight rollouts, which in this
case was the number used in the importance sampling, or if the learned policy threw
the ball either in front or behind the cup.

6.3.1 Imitation Learning with Varying Initial Rollouts

As the ball-in-a-cup game is a complex skill, the learned DMP is not able to exactly
reproduce the demonstrated trajectory, indicated in Figure 32, which, in turn, leads
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to the ball not entering the cup, indicated in Figure 33. Thus, for learning a
representation of the taught skill which can generate a policy where the ball goes
into the cup, subsequent reinforcement learning is needed. The performance of the
learning algorithm for two different cases, case A with 11 initial rollouts and case B
with no initial rollouts, is indicated in Figure 34a and 34b. These results are also
listed in Table 2. These results are slightly worse than the ones presented in [50]
where it took on average about 100 rollouts to fine tune the 231 shape parameters
used. However, the main difference between the results is when considering how
many trials it took for the optimal policy to be found after the ball went into the
cup for the first time. In [50] they mention that it on average got the ball into the
cup after 43 rollouts but it took an additional of about 57 trials before the policy
converged to the optimal one. In comparison, it took, on average, case A 11 trials
and B 14 trials to find the optimal policy after the ball went in for the first time.
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Figure 32: The different plots depicts the demonstrated, desired and commanded
position and orientation of the end tool.
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Figure 33: This figure shows the distances between the cup and the ball when the
skill is only replicated by the DMP. The mean distance from these 20 rollouts is 24.5
cm.
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Figure 34: Figure (a) and (b) both depicts the expected reward averaged over their
individual number of successful trials. Rollouts when the vision system failed are
discarded. Noteworthy is that the standard deviation is only plotted for every third
rollout.
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Table 2: The performance of the learning algorithm for the two cases

Case Initial
rollouts

Number of
successfully learned
policies out of
totally 14 trials each

Average number of
rollouts before
converging

Average number
of rollouts after
ball went into the
cup for the first time

A 11 12 79.9 11
B 0 6 62.8 14

Based on the results presented in Table 2 both case A and B differs to some extent
when considering the number of successfully learned policies and their individual
convergence rate. 14 trials were conducted in each case, and in case A the number of
successful trials was 12, whereas the same results for case B was 6. The mean of the
convergence rate, on the other hand, was 79.9 in case A and 62.8 in case B. Based
on these numbers, there is a need for a statistical analysis to be able to tell if there
exist a statistical difference between the two cases.

However, to do the statistical analysis one has to differentiate between a trial
where the robot did not learn the optimal policy at all and one where it learned a
suboptimal one, namely where the ball got thrown either in front or behind the cup.
The suboptimal policy is actually an optimal policy considering the reward function
defined in this thesis; however they are still discarded as the actual meaning of the
game is to throw the ball into the cup and not in front or behind it. These restriction
reduces the overall number of unsuccessful trials to only one in case A and seven in
case B.

With these simplifications, two null and alternative hypotheses were examined.
The first null and alternative hypotheses considered the number of successfully learned
policies and was stated as

H0: There are no differences in the mean number of successfully learned policies
when using eleven initial rollouts to using zero.

Ha: The mean number of successfully learned policies is higher when using eleven
initial rollouts than using zero.

While the second null and alternative hypotheses considered the convergence rate of
the successfully learned policies and was stated as

H0: There are no differences in the mean convergence rate when using eleven initial
rollouts to using zero.

Ha: The mean convergence rate is higher when using eleven initial rollouts to using
zero.

The results from the statistical comparison can be seen in Table 3. Based on the
p-value listed for µA,0<µB,0 (0.004647) the first null hypothesis, stating that there are
no difference in the mean number of successfully learned policies when using eleven
initial rollouts to zero, can be rejected. Thus, the alternative hypothesis, stating that
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using eleven initial rollouts will increase the number of successfully learned policies
than using zero, holds. On the other hand, the p-value listed for µA,1<µB,1 (0.0964)
is not low enough for rejecting the null hypothesis. All in all, the probability of
successfully learning policies when 11 initial rollouts were used is higher than when 0
initial trials were used, whereas nothing can be said about the convergence rate.

Table 3: The summary of the results from the statistical analysis for learning to play
the ball-in-a-cup game with different number of initial rollouts

Case mean and
standard

deviation of
the number of
successfully
learned
policies

mean and
standard

deviation of
the number of
rollouts before
converging

p-value for
µA,0<µB,0

(significance
=1%)

p-value for
µA,1<µB,1

(significance
=1%)

A µA,0 = 0.92
σA,0 = 0.23

µA,1 = 79.9
σA,1 = 20.5

0.004647 0.0964

B µB,0 = 0.46
σB,0 = 0.52

µB,1 = 62.8
σB,1 = 10.6

Next an example of the demonstrated, learned and replicated trajectories along
with the sampled noise from one successful trial in case A is presented in Figures
35 and 36 respectively. In Figure 35 it can be seen that the trajectories where the
learning actually tunes the shape parameters, namely in y- and z-direction, changes
in a smooth fashion, exactly as intended with the chosen sampling method. It is
worth pointing out the error between the commanded position in x-direction and all
the orientations and the actual measured positions. This relatively large error clearly
indicated the limitations regarding the position accuracy of the Cartesian impedance
controller presented in Section 5.3. Figure 36, on the other hand, shows that the
sampled noises are correlated and that the initial and final magnitude of the sampled
noise is low, which is all in line with the characteristics set up by the covariance
matrix in Equation (38). Furthermore, the influence of the β parameter can also be
depicted, where a high value effectively lowers the magnitude of the noise.
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Figure 35: The different plots depicts the position and orientation of the end tool
after a specific amount of trials. Worth pointing out is that the same states are
replicated for all the orientations and all positions except in y- and z-direction where
noises are applied to the weights. The final trajectories for these directions is clearly
different from the original ones, thus the reinforcement learning does indeed change
the overall shape of the trajectories.
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Figure 36: This figure depicts the sampled noises in both y- and z-direction after
1, 11, 21 and 31 rollouts. It can clearly be seen that the noises, sampled from
N (0,R−1), is correlated and low at the start and end of the trajectory. Furthermore,
the influence of the optimization parameter β is also recognizable.
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6.4 Discussion
This Chapter consisted of both a simulation (Section 6.2) and a real-life experiment
(Section 6.3). The simulations were mainly fulfilled as to guide the implementation
on the real hardware by pointing out potential errors and to find an appropriate
method for selecting the covariance matrix from which the noises were sampled.
From the simulations the covariance matrix was selected as a differencing matrix as
this produced correlated noise with low magnitude of the initial and final values. The
problem with this approach was the initialization of the covariance matrix. In this
thesis the initialization of the covariance matrix was set individually for every motor
primitive which was to be disturbed. This approach took a considerable amount
of time as it was basically tuned through trial and error. In comparison to the
initialization, the approach for diminishing the influence of the noises as the policy
converged to an optimal one was easy to develop and worked considerably well.

To study if the covariance matrix used in the simulations worked well also in
real-life, one experiment on a KUKA LWR was conducted. This experiment proved
that to successfully play the ball-in-a-cup game the initially produced policy from
the learned DMP was not enough. Thus, to successfully learn the skill the shape
parameters of the DMP were fine-tuned with the RL algorithm PoWER. The results
indicated that this RL algorithm was able to fine-tune the parameters which enabled
the robot to successfully learn the movement and get the ball into the cup. When
considering the overall convergence rate, the result from both case A and B were
slightly worse than the results presented in [50]. The difference in convergence rate
might originate from a lower exploration rate compared to [50]. The exploration
rate can be increased by increasing the value of the initialization parameter γ which
in turn will produce larger values for the sampled noise. This, On the other hand,
can also affect how often the robot will be able to learn the optimal policy as large
exploration can lead to more policies which never converges or are infeasible for the
robot to physically execute. Thus, improving convergence rate can impair the success
rate for learning the optimal policy and impairing the convergence rate can have the
opposite affect.

However, in contrast to the lower convergence rate, the obtained results in
comparison to [50] indicated a faster convergence rate once the ball went into the cup
for the first time. Here it only took about 11-14 rollouts for the policy to converge
once the ball went in while in [50] it took up to 30 trials. This improvement probably
originate from the exploration rate. As the sampled noises are highly correlated new
policies are explored in a safe manner and does not differ in such a large extent from
previous trajectories. Moreover, the impact of the noise diminishes as the optimal
policy converges. Thus, as the ball starts to get close to the cup, for example hitting
the side of it, the magnitude of the added noise is considerably small as only small
perturbations of the shape parameters are sufficient to finally get the ball into the
cup. Therefore, the PoWER algorithm reweighs the parameters based on rollouts
which are slowly but safely improving towards the optimal policy.

Furthermore, the statistical analysis of cases A and B indicated that using more
initial rollouts increased the probablility for the robot to learn an optimal policy.
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This result makes sense as the system is stochastic, some rollouts will always be
considered bad. If the reweighing then immediately starts from such a bad rollout
the shape parameters will already be affected by this rollout, and subsequently
the learning algorithm can have problems overcoming this reweighing and turn the
learning back towards a better policy. This problem, however, is alleviated by doing
several initial rollouts and then reweighing only the top N of these rollouts. In
this way, bad rollouts are washed out and only good ones are used for the initial
reweighing. Another interesting fact from the statistical analysis is that even though
case A basically used 11 rollouts before reweighing the shape parameters, the average
number of rollouts before converging were not statistically different from doing zero
initial trials. Thus, the convergence rate also seems to be improved by doing several
initial trials and only using the top N for reweighing. This is probably a result of
reweighing several good rollouts at once, which will change the shape parameters
more than only using one rollout.

Finally, the experiment also proved the inaccuracy of the Cartesian impedance
controller. Although the stiffness was set to the maximum allowed value, the controller
was unable to exactly replicate the desired position. This comes from the fact that
the controller replicates a spring/damper system and no matter how high the stiffness
is set, the system will always produce an error.

All in all, both the simulation and the experiment proved that DMP with subse-
quent reinforcement learning, where the noises are sampled from a multivariate zero
mean Gaussian distribution with the covariance matrix initialized as a differencing
matrix, was able to successfully learn how to play the ball-in-a-cup game. As this
game can be seen as a benchmark problem in robotics, the approach used in this
thesis, where exploration of new trajectories is considerably safe, can most probably
also work for other tasks where reinforcement learning is needed or has been used
before, for instance as in the pancake flipping task [52]. However, this solution also
has its drawbacks. First of all, the covariance matrix has to be initialized in such a
way that it produces large enough noises for the policy to converge in a reasonable
amount of rollouts. Moreover, the robot did, in some trials, not learn the optimal
policy. This number, however, can probably either be eliminated or at least be made
smaller if the initialization of the covariance matrix is fine-tuned. The fine-tuning of
the β parameter, on the other hand, worked well. However, fine-tuning it as is done
in this thesis, exponentially increasing as the rewards gets higher, is probably not
applicable for all applications.
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7 Conclusions
The goal of this thesis was to study how a robot can acquire a learned skill from
a human teacher and subsequently improve this skill by reinforcement learning.
However, as robots also have their physical limitations, the reinforcement learning
must follow a safe path as to ensure safety for both the robot and the user. With all
this in mind, the thesis sought to answer the following question:

Q1. How can the exploration rate be made safe for exploring new trajectories as to
improve the current policy?

Answering this question is a step towards showing that robots are able to learn in
the same manner as humans, something which is of great significance if robots are to
be integrated safely into a human environment.

This thesis was split into a theoretical part consisting of three chapters Learning
From Demonstrations, Dynamic Movement Primitives and Reinforcement Learning
and a more practical part consisting of the two chapters Testbed and Experiments
and Results.

The empirical findings in the first three chapters were crucial to argue for a
solution to Q1. First of all, the skill had to be demonstrated with a sensible approach
and subsequently the learned representation by the robot had to be very smooth.
In the Learning from Demonstration chapter kinestethic teaching was chosen as
the teaching method as this effectively avoided the correspondence problem and
was easy to execute on the KUKA LWR. For learning a representation of the skill
DMP was chosen as this produced even smoother representations than the actual
demonstrations.

However, only reproducing the learned movement encoded as a DMP was not
enough to successfully bring the ball into the cup. Thus, reinforcement learning
had to be incorporated as to improve the initially learned skill. As discussed in the
Reinforcement Learning chapter, classical RL approaches were not applicable to learn
the skill as the search space was infinite. To alleviate this shortcoming, reinforcement
learning was applied to an already learned skill encoded as a DMP, thus reducing
the search space effectively. The resulting state-of-the art policy search algorithm,
which was also implemented, was the PoWER algorithm.

For both testing the overall performance of the PoWER algorithm and finding
a feasible approach for selecting the exploration rate (subsequently answering Q1)
everything was tested on a KUKA LWR4+ robotic arm. The approach of selecting a
covariance matrix as a differentiating matrix resulted in correlated noise with low
initial and final values. By utilizing this noise, an optimal policy could be found in
a safe manner. Furthermore by adding another scaling parameter which tuned the
influence of the added noise, the policy converged to the optimal one after about 11
rollouts after the ball went into the cup for the first.

The implemented system in this thesis also had its limitations. Although the
learned movement should theoretically only be executed in a plane, it did indeed
happen that the learned policy by the robot reproduced a movement where the ball
was thrown either in front of or behind the cup. However, as the reward function
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was based on the horizontal distance in y-direction between the ball and the cup, the
learned policy was actually an optimal one. Hence, the robot did indeed optimize the
reward, but not learn the skill as intended. Another limitation of the actual system
was the visual tracking of the ball as it often malfunctions due to not being able to
track the red ball at all. With all this in mind, future work to improve the system
built in this thesis should concentrated on:

• allowing the skill to be learned in free space, thus also learning a DMP in x-
direction as well as reformulating the reward function to take into consideration
the distance from the ball to the cup in both x- and y-direction;

• improving the visual tracking of the ball by either using a camera with a higher
frame rate, or by using a Kalman filter on the ball to ease the tracking of it.

Other possibilities for future work, which do not include the limitations of the
implemented system, are to:

• learn an initial representation of a complex skill and then generalize this to a
new situation;

• learn an in-contact task which is subsequently improved with RL;

• incorporate apprenticeship learning (inverse reinforcement learning) instead of
classical RL.

The generalization of learned movements has previously been studied; however,
there is still a gap between generalization and subsequent reinforcement learning. In
the scope of this thesis, a new situation would be a longer or shorter string which
would affect the dynamics of the system. Nevertheless, if several representations of
the skill have been learned for varying situations, these might be combined as to
provide an initially good guess of how to perform the skill and then be subsequently
improved by reinforcement learning.

For in-contact tasks the problem is to also learn a representation for the forces.
Although modelling such skills have been studied, it has not yet been combined to
much extent with reinforcement learning. In these kind of applications, for instance
wood planing, the magnitude of the applied force will affect the overall performance of
the system and should be explored as to find a good representation of the movement.

For apprenticeship learning a reward function does not exist, but has to be learned.
The problem with reinforcement learning is that the user has to provide the reward
function, hence the performance of the system is dependent on this reward function.
However, in situations such as driving, an overall working reward function does not
exists and for robots to learn how to drive they also needs to learn this reward
function.

All in all, this thesis showed that a robot can learn a complex task, such as
playing the ball-in-a-cup game, by learning an initial representation of the movement
from a human demonstration and then subsequently improving the learned skill until
mastering it. If, or when, also the proposed future work can be solved, the whole
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framework of teaching a robot a new skill simply by demonstrating it will drastically
reduce development costs for robots which, in turn, might lead to more robots in
human environments.
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