
Multi-human Tracking using High-visibility Clothing for Industrial Safety

Rafael Mosberger, Henrik Andreasson and Achim J. Lilienthal

Abstract— We propose and evaluate a system for detecting
and tracking multiple humans wearing high-visibility clothing
from vehicles operating in industrial work environments. We
use a customized stereo camera setup equipped with IR
flash and IR filter to detect the reflective material on the
worker’s garments and estimate their trajectories in 3D space.
An evaluation in two distinct industrial environments with
different degrees of complexity demonstrates the approach to
be robust and accurate for tracking workers in arbitrary body
poses, under occlusion, and under a wide range of different
illumination settings.

I. INTRODUCTION

Reliably detecting and tracking workers from both human-

driven and autonomous vehicles operating in industrial work

sites is a crucial prerequisite for any on-board safety system

aiming at preventing vehicle-pedestrian collisions. Systems

that attempt to offer a solution to this problem are confronted

with challenging requirements. They need to offer robust per-

formance under different weather and illumination conditions

and in potentially cluttered indoor and outdoor sites. Methods

that address these challenges can be found in the well-studied

area of pedestrian detection for road traffic, where a great

deal of research has focused on detecting people in upright

positions. However, the diversity of industrial environments

and the variety of potential body positions in which workers

appear (see Fig. 1 for some examples) prevent the direct

application of existing pedestrian detectors in an industrial

context.

In our previous work [1], we reported on a novel human

tracking approach that targets industrial environments in

which workers wear high-visibility clothing. Safety vests

with highly reflective properties have become widely ac-

cepted throughout industry as an effective way to protect

workers from accidents. The core idea that allows for reliable

human tracking is to identify workers by detecting the retro-

reflective material attached to their safety clothing. We use

customized a camera system with infrared (IR) filter and

active IR illumination to capture flash/non-flash image pairs

in which reflective material appears significantly brighter in

the image acquired with flash (refer to Fig. 3 for an example).

We tested a monocular camera setup with IR flash for the

purpose of tracking a single upright person at distances rang-

ing up to 10 meters and under different weather and illumina-

tion conditions [1]. A binary classifier, trained on local image

feature descriptors proved satisfactory for discriminating the

reflective stripes on a worker’s safety vest from a limited
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Fig. 1. A selection of challenges faced by human detectors in industrial
work environments, including partly occluded workers in non-upright body
poses as well as varying illumination settings. Detections as obtained from
our human tracker are indicated with yellow squares.

set of other reflective objects. We further demonstrated that

the distance to a human can be estimated with an accuracy

of less than a meter using the same image features as for

classification [2]. The results indicated reliable detection not

only in favorable but also in challenging situations, such

as under direct exposure to the sun. The estimation of the

distance to a tracked target through supervised learning of

visual features allowed to deploy the system as a compact

single-camera setup. Yet, it requires costly acquisition and

labeling of a considerable amount of training data.

The camera system presented in this paper extends on

our previous work [1]. We describe the necessary additions

and modifications in order to perform simultaneous tracking

of multiple humans. The new configuration uses a stereo

setup to estimate the distance to a tracked person, thus

rendering the training of the previously employed regressor

superfluous.

This article makes the following main contributions: 1) We

describe the extension of our single-target human tracking

approach towards multi-target tracking. 2) We discuss the

change from a point based to a contour based representation

of interest regions and show how the change helps to address

the data association problem in the tracking stage. 3) We

present a modified hardware setup consisting of a near-

infrared (NIR) stereo camera that extends the detection range

from 10 to 20 meters. 4) We perform an extended evaluation

in two distinct industrial environments and put particular

emphasis on demonstrating our system’s ability to track

people in arbitrary body poses.



II. RELATED WORK

Robust human detection from vehicles and machines in

industrial scenarios has so far attracted less attention than

the field of pedestrian detection for road traffic. In the latter,

the urgent demand to increase automotive safety has led to

the development of on-board pedestrian protection systems

(PPSs) that anticipate potential collisions, provide the driver

with audible or visual warning signals, and if necessary even

take automatic braking actions.

The basic task of a corresponding safety system for

vehicles and machinery in an industrial scenario is similar.

Yet, the diversity of environments, the potentially cluttered

work space, as well as the variety of body positions of

workers constitute a set of harsh challenges. Consequently,

direct application of PPSs from road traffic to industrial

applications does not lead to the performance demanded by

the industry.

Several authors have proposed solutions that are tailored to

the needs of industrial scenarios. Heimonen et al. [3] describe

a stereo camera based human detection system for heavy

industrial machinery that provides a framework for combin-

ing multiple human detection methods in order to increase

the overall robustness. Dickens et al. [4] propose to fuse

the information of thermal images (for detection) and a 3D

range sensor (for depth estimation) for a vehicle-personnel

collision system for the mining industry. Teizer et al. [5]

propose a safety system for construction equipment based

on radio-frequency identification (RFID). Compared to other

approaches, it not only informs the machine operators about

the presence of humans but also warns a detected human of

the nearby vehicle. Therefore, each worker is equipped with

a personal protection unit that provides auditory, visual and

vibrating alarms in case of danger.

The idea of using the properties of high-visibility clothing

in order to facilitate the detection of industrial workers has

been applied by Park et al. [6]. Their vision-based approach

specifically identifies the fluorescent color of safety vests

by processing local color histograms extracted from the

regions of interest. Even though the reflectivity of the vests

is not exploited, the authors show that the distinctive color

considerably contributes to effective detection.

III. SYSTEM DESCRIPTION

The system presented in this paper is an extension of

our earlier work on human tracking with a single flash

camera [1]. Here, we adopt the same overall framework with

a detection, classification and tracking stage. An overview

of the different processing steps is presented in Fig. 2.

The main objective is to extend the existing approach to-

wards simultaneous tracking of multiple persons. Therefore,

the system needs to undergo several modifications which

primarily concern the tracking step. However, in order to

address the problem of data association that every multi-

object tracking system has to cope with, we also decided

to modify parts of the segmentation process and opted for

a shape based representation instead of the original feature

point representation in [1] to describe the regions of interest.
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Fig. 2. Overview of the detection and tracking system

This change allows us to compute overlap measures between

detected blobs and tracked objects and thus facilitate data

association. We also replace the supervised regression based

estimation of the distance to a detected person by stereo

triangulation in order to reduce the costly acquisition and

labeling of training data needed to train the regressor model.

As it was done in the previous system, we perform particle

filtering to estimate a tracked object’s position and velocity

in a 3D space relative to the camera. The main difference

of the multi-object tracker is that a separate particle filter is

maintained for every of the simultaneously tracked objects

and a data association step is introduced before the individual

particle filters are updated.

A. Hardware and Image Acquisition

The camera setup deployed for detecting reflective ma-

terial (cf. Fig. 4a) combines a 1 megapixel monochrome

CMOS sensor with high NIR sensivity, a wide-angle lens,

an NIR bandpass filter, and a flash unit consisting of 16

highpower NIR LEDs. The center wavelength of both filter

and flash is 940 nm and the filter has a bandwidth of 10 nm.

Using two identical cameras of the described type, we build

a stereo camera unit with a base line of 200 mm (cf. Fig. 4b).

The stereo rig further features a color camera that is used

purely for visualization purposes.



Fig. 3. Outdoor scene containing a total of 3 persons (left) with corresponding input images as captured by one of the NIR cameras using IR flash
(center) and without using flash (right). Reflective regions as identified in the segmentation process are indicated with a red contour.

A synchronized image stream is acquired from the stereo

camera while alternately using the IR flash for every second

image capture. The captured flash/non-flash input image

pairs of both cameras, denoted I1
f = (I1f , I

1
nf ) and I2

f =
(I2f , I

2
nf ) for the first and second camera respectively, are the

only input to the tracking system. An example of a captured

flash/non-flash image pair is depicted in Fig. 3.

B. Segmentation

The goal of this stage is to extract regions of interest from

the input images that correspond to reflective objects. This is

achieved by identifying areas that are significantly brighter

in the image If captured with IR flash than in image Inf
captured without active illumination.

1) Blob Detection: A first step in the extraction of re-

flective objects is to identify bright regions in the image

If taken with flash. To do so, we apply local adaptive

thresholding to If with a threshold computed as the average

intensity in a square local neighborhood subtracted by an

offset. Using contour following applied to the thresholded

image, we then extract a set of raw blobs Braw in which

each blob is characterized by its respective contour Λ and

the centroid c = [cx, cy] of its position:

Braw =
{

B[i] =
〈

Λ[i], c[i]
〉

| i = 1, ..., Nraw

}

(1)

2) Reflectivity Check: In order to specifically identify

reflective objects, we submit all blobs extracted from If to a

verification process. We verify whether the intensity values

in the surrounding area of a blob are similar in the images

a) b)

Fig. 4. Hardware configuration used in our experiments: a) Near-infrared
(NIR) camera equipped with a wide-angle lens, a NIR bandbass filter (not
visible in the image), and a flash unit consisting of 16 high-power NIR
LEDs. b) Stereo camera unit built using two identical NIR cameras (right).
The additional color camera in the center of the stereo rig is not used by
the tracking algorithm and purely serves for visualization purposes.

If and Inf , or if they are distinctly higher in image If . The

first case is an indication that the blob corresponds to an

object that appears bright due to background illumination,

for example by the sun. Blobs that match this criterion

are rejected. In contrast, the second case indicates that the

corresponding object has highly reflective properties and

therefore the blob is retained. We refer to the set of blobs that

pass this reflectivity check as the set Breflex. For a detailed

explanation of the verification process, refer to [1].

C. 3D Position Extraction

For all blobs that passed the reflectivity check we estimate

the position of the corresponding reflective object in a 3D

space relative to the camera. To do so, we make use of

the stereo input and apply dense stereo matching to regions

around each blob. Subsequently, we compute a single median

disparity value per blob. As illustrated in Fig. 5, disparity

extraction is unreliable in the white regions inside a blob

due to the lack of texture, but produces consistent results in

the regions near their border.

We therefore proceed in two steps: Using the stereo image

pair (I1f , I
2
f ), disparity is computed inside a rectangular

local region around every reflective blob in Breflex. We then

compute a mean disparity for each blob by taking into

account all pixels with a distance smaller than s from the

contour. Using the computed mean disparity value, the blob

centroid c and the camera’s inverse projection function, we

finally obtain a 3D position estimate p̂ for every blob.

Fig. 5. The figure illustrates how disparity is computed for a detected blob:
The scene (left) is captured with the NIR camera and the resulting image
If (middle) is segmented to extract the contours of the reflectors, drawn in
red. A disparity map (right) is then computed in the neighborhood of each
contour by using the images If of both NIR cameras. Due to the lack of
texture, disparities are sometimes not (black pixels) or erroneously (differing
gray levels) computed in regions within the blob. However, consistent results
are obtained from the regions near the contour and therefore only the zone
delimited by blue lines is taken into consideration.



Fig. 6. U-SURF feature descriptors are
used to describe the visual content in
the neighborhood of the detected blobs
(as outlined in red). The descriptors are
extracted from a square region (yellow)
with a size corresponding to the length of
the blob’s bounding box (blue).

D. Classification

Blobs that passed the reflectivity test originate either from

a reflector on a high-visibility garment or from another

reflective object in the scene. In order to avoid false alarms

under the presence of such objects, we attempt to classify

all blobs B ∈ Breflex into vest- and non-vest objects, where

the term vest refers to any kind of high-visibility clothing.

1) Feature Extraction: We observed in [2] that state-of-

the art image feature descriptors such as SURF or BRIEF

provide a powerful tool to describe the local neighborhood

of a detected reflector. The new contour-based representation

provides now additional flexibility in defining the exact

locations from which the feature descriptors are extracted.

As illustrated in Fig. 6, we extract SURF descriptors from a

square area with the same center as the blob’s bounding box

and with a size corresponding to the bounding box’s length.

It is worth noting that the SURF descriptors are extracted

from non-SURF features. The characteristic feature orienta-

tion which is provided if features are detected with the SURF

detector is not available here. In consequence, the extracted

descriptors correspond to the upright, non-rotation invariant

version of SURF, referred to as U-SURF.

2) Blob Classification: Classification of the feature de-

scriptors is achieved using a Random Forest classifier. Each

sample is individually classified by all the trees building the

forest and we compute the estimated likelihood L̂ that a

reflector represents a vest reflector as the number of trees

with a positive vote divided by the number of trees.

E. Tracking

As the ultimate goal of the application is to track indi-

vidual persons, the tracking unit aims at associating single

blob detections with a set of tracked objects and maintain a

filtered estimate of the object’s state. Thereby, we choose to

first track all reflective objects in the scene regardless of their

nature and then infer the likelihood of an object representing

a person by aggregating the information provided with the

individual blobs.

Therefore, let us assume that at a time instant t we

are given a set Breflex,t of Nt blobs corresponding to all

detected reflective items in the scene. For each of the blobs,

characterized by the contour Λ and centroid c, a 3D position

estimate p̂ has been computed as well as an estimate L̂ of

the likelihood that the blob represents a reflector belonging

to a high-visibility garment:

Breflex,t =
{

B
[i]
t =

〈

Λ
[i]
t , c

[i]
t , L̂

[i]
t , p̂

[i]
t

〉

| i = 1, ..., Nt

}

(2)

In a first step we attempt to assign the blobs in Breflex,t to a

set Ot of M objects being tracked at time instant t, using

both 2D overlapping and 3D distance criteria. Then, based

on the assignments, the object states are updated and new

objects are initialized for blobs that failed to be assigned.

Objects in Ot are characterized by their 3D position and

velocity state st, a tracking confidence measure ct and an

estimated likelihood Lt that the tracked object corresponds

to a person:

Ot =
{

O
[j]
t =

〈

s
[j]
t , c

[j]
t , L

[j]
t

〉

| j = 1, ...,Mt

}

(3)

with the state vector st,

st = [pt ṗt]
⊤
= [xt, yt, zt, ẋt, ẏt, żt]

⊤
(4)

being recursively estimated by a particle filter. The confi-

dence measure ct of an object is used as a indicator of

consistent detection and is incremented by 1 in every frame

where one or several blobs are assigned to the object and

decremented by 1 in the opposite case. Only objects that

reach a confidence of ct = 3 are considered. The estimated

likelihood Lt that the observed object represents a person is

calculated as the average of the corresponding estimates L̂ of

all individual blobs assigned to the object up to time t. Every

object is further represented by a 2D bounding box that is

computed from state st and that approximately delimits the

image region where the tracked object is believed to be.

1) Data Association: Standardized high-visibility cloth-

ing (cf. Fig. 9) always comes with multiple reflectors at-

tached to different areas of a garment and it is therefore

most likely that multiple reflective blobs are detected for the

same tracked person. On the other hand, a reflector cannot

represent multiple objects at the same time. In consequence,

the first tracking step consists of a many-to-one mapping that

assigns blobs to currently tracked objects. For every potential

assignment of a blob B[i] to an object O[j] we define a cost

function d(B[i], O[j]) that takes a low value if it is likely that

the i-th blob represents a reflector of the j-th object and a

high value in the opposite case.

The cost function is computed based on two criteria.

First, the overlap of the blob area with the bounding box

of an object in the 2D image plane should be high. This is

expressed by the overlap cost function d∩, defined as

d∩(B
[i], O[j]) = 1−

A(B[i]) ∩A(O[j])

A(B[i])
(5)

where A(B[i]) denotes the area delimited by the contour Λ[i]

of the i-th blob, and A(O[j]) the area covered by the j-th

object’s 2D bounding box. At the same time, the absolute

difference of the blob’s 3D position estimate p̂t and the

object’s current 3D position pt should be small. This is

expressed by the distance cost function dδ:

dδ(B
[i], O[j]) = 1− exp (−α× ||p̂t − pt||) (6)

Finally, we define the cost function as the weighted sum of

d∩ and dδ where the weights w∩ and wδ allow to give a

preference to one of the two criteria:

d(B[i], O[j]) = w∩×d∩(B
[i], O[j])+wδ×dδ(B

[i], O[j]) (7)



Fig. 7. Wheel loader (left) and forklift (right) on which the camera setup
was evaluated. The location of the sensor unit is indicated in red.

A given blob B[i] is then assigned to the object O[j] for

which the lowest assignment cost was computed, under the

restriction that this cost needs to be lower than a defined

assignment threshold λd. If the lowest computed assignment

cost is above λd, a blob is considered to belong to an object

which is not yet being tracked and no assignment is made.

2) Object Update: Based on the blob-to-object assign-

ments, the states of all tracked objects in Ot are updated.

This is achieved by providing each object’s particle filter

with the respective blob detections and applying the motion

and measurement model as described in detail in [1]. After

updating the state st, the 2D bounding box of an object is

updated by centering it around the projection of the new

filtered 3D position estimate pt on the image plane.

3) Object Initialization and Removal: Blobs in the set

Breflex,t that could not be associated to any tracked object

are considered as candidates to initialize new objects. To do

so, we extract connected regions of similar disparity from

the previously computed disparity image and initialize a new

object for every group of blobs that falls in the same cluster.

Finally, existing objects are removed either if their 2D

bounding box falls out of the image border or if their

confidence measure ct reaches a value equal to 0.

IV. EXPERIMENTS AND RESULTS

We evaluated our tracking system in two distinct environ-

ments and by mounting the camera setup on two different

industrial vehicles as shown in Fig. 7. A synchronized data

stream from the NIR stereo camera was recorded at 50 fps,

leading to flash/non-flash image pairs available at 25 Hz.

Images from a color camera were recorded at 10 fps for

the purpose of visualization and to facilitate the manual

annotation of the datasets. A binary Random Forest classifier

was trained on 200k samples from reflective vest reflectors
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Fig. 8. Precision-recall curves obtained from classifying blobs into vest
and non-vest reflectors based on the different descriptors. The graphs
respectively represent Seq. #1 (left) and #3 (right).

Fig. 9. The two types of reflec-
tive safety clothing used through-
out the experiments: ANSI/ISEA
safety class 2 vest with reflectors
only around the body (right) and
safety class 3 jacket with addi-
tional reflectors in the shoulder
and arm area (left).

and 100k other reflective objects recorded in various environ-

ments. In addition to the camera system, we further equip the

sensor unit with a Velodyne HDL-64E 3D LIDAR in order

to extract ground truth positions of the tracked persons.

Two different types of reflective safety clothing were used

throughout the experiments as depicted in Fig. 9. The two

garments represent respectively safety class 2 and 3 of the

ANSI/ISEA 107-2004 standard and are distinguished by the

amount and spatial distribution of the reflective material.

The first test environment is an outdoor gravel loading

pit where we mounted the camera system on the roof of a

wheel loader (cf. Fig. 7, left). Typical loading and unloading

scenarios were simulated, including sharp turns and alternate

forward and reverse driving up to 30 km/h. Apart from the

host vehicle, a second wheel loader and a hauler were present

in the area and a total of four persons were either walking

in the vicinity of the machines or operating them. Two

test sequences from this environment are evaluated. Seq. #1

contains a total of 1800 frames corresponding to 3 minutes

and was recorded in cloudy weather conditions. Seq. #2

contains 1200 frames corresponding to 2 minutes and was

recorded in the evening when the sun was low and shining

directly into the camera, leading to much higher background

illumination in the images captured by the NIR cameras.

Apart from the safety clothing, the only other reflective

objects present in the environment are multiple cat’s eye

reflectors on the vehicles.

The second test environment is an indoor manufactur-

ing and maintenance site for industrial vehicles. Numerous

workers are present in the cluttered area, carrying out tasks

in various body postures while often being partly occluded

by objects. The sensor unit was mounted on the roof of

a forklift (cf. Fig. 7, right) that was operated at speeds

up to 20 km/h. A test sequence (Seq. #3) of 1200 frames

(2 minutes) is evaluated in which a considerable amount of

reflective objects other than the safety clothing appear.
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Fig. 10. The plots show the evolution of the number of false positives
per frame for Seq. #1 (left) and #3 (right) depending on the classification
threshold λvest.
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Fig. 11. Ratio of mostly hit (solid) vs. mostly missed (dashed) trajectories for Seq. #1–#3 depending on the classification threshold λvest.

A. Classification

Fig. 8 shows the performance of the Random Forest blob

classification into vest and non-vest reflectors. To illustrate

the superiority of SURF over shape-based descriptors for

the type of objects to be classified in our application, we

also indicate results for a descriptor combining the seven Hu

Moments [7] with several other variables computed from the

blob contour, namely the circularity, the area-to-perimeter

ratio as well as the aspect ratio of the bounding box of the

blob contour.

B. Tracking

Tracking performance is evaluated in the 2D image space

using similar criteria as described in [8]. The trajectories

of all humans are manually annotated in every 5th frame.

A new trajectory is counted if a person is occluded during

more than 10 consecutive frames. We define a trajectory as

mostly hit if successful detections cover more than 80% of

the frames in which the corresponding person is visible.

Similarly, mostly missed trajectories are defined as being

covered in less than 20%. Finally, we consider the number

of false alarms, referring to tracked reflective objects that

are mistakenly classified as humans. Only one false alarm is

counted if the same object is repeatedly misclassified.

Tracking performance according to the above measures is

shown in Figs. 11–10 while numerical results for λvest = 0.7
and a 64-dimensional U-SURF descriptor are summarized

in Tab. I. Example tracking results are depicted in Fig. 12

whereas Fig. 13 illustrates different types of erroneous

tracker outputs. The results indicate the capability of the

algorithm to detect workers not only in upright but in

arbitrary body poses and under partial occlusion. Failure

modes include missed detections due to the occlusion of

visible reflectors, missed detections of humans that are

outside the detection range (≈ 20m) and false alarms through

misclassification of detected blobs. Occasional groupings

Seq. Trajectories Mostly

Hit

Mostly

Missed

False

Alarms

Trajectory

Coverage

#1 30 23 0 4 89.9%

#2 30 27 0 0 88.4%

#3 28 12 5 10 65.5%

TABLE I

QUANTITATIVE TRACKING RESULTS FOR SEQ. 1–3

of two or more persons into a single tracked object were

observed in cases where persons stand very close to each

other. Though an undesirable effect, it is not crucial from a

safety point-of-view as long as detection is maintained.

Most trajectories that fail to be consistently tracked belong

either to persons appearing outside the detection range of

the system, or to persons under a high degree of occlusion.

Especially in Seq. #3, occlusion was the predominant reason

for poorly covered trajectories.

C. Position Estimation

The accuracy of the estimated trajectories was assessed

using Seq. #1. In Fig. 14, a selection of trajectories with

ground-truth and estimated positions as projected to the

ground plane is shown. A mean absolute positioning error

of 0.34 m was reported over all trajectories.

V. CONCLUSION

In this article, we presented a multi-person tracking sys-

tems developed for industrial work environments in which

humans wear high-visibility clothing with reflective markers.

The system has been evaluated in industrial indoor and

outdoor environments and the results indicate robust and

accurate tracking performance whenever the reflectors of

the safety garments are clearly visible to the camera. A

considerable decrease in tracking coverage is observed in
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Fig. 14. The figure shows a selection of ground-truth and estimated
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view is indicated with red lines.



SEQUENCE #1

SEQUENCE #2

SEQUENCE #3

Fig. 12. Example tracking results for Seqs. #1–3. Detections are indicated with a yellow square.

a) b) c) d)

Fig. 13. Typical erroneous outputs of the tracker: a) missed detection of a person (marked with a red circle) in a body position that hides all reflectors
of the safety clothing, b) missed detection of a person that is tracked but misclassified as a non-human, c) false alarms, and d) occasional grouping of
persons that stand close to each other.

highly cluttered environments where the reflectors are often

hidden to the camera.

Among the advantages over conventional vision-based

human detectors we emphasize the robustness to different

illumination settings and the ability to detect humans re-

gardless of the body pose, provided that a certain amount

of reflective material is visible. A drawback of the approach

lies in the fact that any kind of reflective material is detected.

Even though the blob classifier attempts to extract only the

relevant part of the reflectors, occasional false alarms are

hard to prevent, especially if reflectors look similar in shape

and size to the ones attached to the safety clothing.
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