
SDF Tracker: A Parallel Algorithm for On-line Pose Estimation and Scene
Reconstruction From Depth Images

Daniel R. Canelhas, Todor Stoyanov, Achim J. Lilienthal
Center of Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Abstract— Ego-motion estimation and environment mapping
are two recurring problems in the field of robotics. In this work
we propose a simple on-line method for tracking the pose of
a depth camera in six degrees of freedom and simultaneously
maintaining an updated 3D map, represented as a truncated
signed distance function. The distance function representation
implicitly encodes surfaces in 3D-space and is used directly to
define a cost function for accurate registration of new data.
The proposed algorithm is highly parallel and achieves good
accuracy compared to state of the art methods. It is suitable for
reconstructing single household items, workspace environments
and small rooms at near real-time rates, making it practical
for use on modern CPU hardware.

I. INTRODUCTION

Work has been done in recent years to leverage the power
of parallel hardware architectures to produce practical real-
time solutions for detailed and accurate scene reconstruction
(e.g. [1]). These methods have the potential to open new
doors to robotic applications in which carefully planned
interaction with the physical environment is necessary. The
benefits gained from the use of parallel computational hard-
ware depend on the data structure used to represent the
environment and the methods used to update and maintain
it. This paper presents a highly parallel algorithm for camera
pose-estimation and scene reconstruction, made possible by
using a distance function as the representation of choice.

We implement a truncated signed distance function
(TSDF) over a 3D space by implicit definition through
discrete samples on a cubic lattice (also referred to as voxels).
At any point in space, the function evaluates to a scalar value
that represents the signed distance of that point to the nearest
surface in the environment. Closer to a surface the absolute
value of the distance decreases, while its sign indicates if a
point is behind (negative) or in front (positive) of a surface.
Thus the TSDF provides means for distinguishing between
points inside and outside of objects. A TSDF facilitates
accurate reconstruction of surfaces, provides a metric for the
misalignment of new data respective to previously observed
parts of the environment, and encodes the approximate
gradient direction towards the closest surface. The TSDF
representation is useful to more general robotic applications,
since it can be used to quickly and accurately compute
surface position, orientation and curvature, which may be
relevant to critical tasks e.g., grasp planning, navigation,
object detection and collision avoidance [2].

In this article, we propose a 6 DoF ego-motion estima-
tion system that uses depth images as input to maintain

an updated 3D map of the environment while simultane-
ously tracking the camera pose. The proposed algorithm
is conceptually simple and trivially parallelized. The map
is updated on-line and fuses multiple measurements into
a single consistent model, averaging out noise associated
with the input. We make available an open-source reference
implementation 1 using OpenMP 2 as a package for the Robot
Operating System (ROS) [3] and provide quantitative results
on a well-known RGB-D (color and depth images) dataset
with known ground truth [4].

This work is related to the Kinect Fusion algorithm
proposed by Newcombe et al. [5] by operating in the same
problem domain, i.e. that of simultaneous pose tracking
of a structured light sensor and data fusion into a model
represented as a TSDF. However, the core of our data
registration algorithm is quite different. Our method registers
data directly to the TSDF model, rather than using it to
obtain denoised depth images from a virtual sensor. One of
the benefits is that our method does not depend on explicit
correspondences. New depth images are registered directly to
the model, which is independent of viewpoint and does not
suffer from occlusions inherent to perspective projections.
The proposed algorithm, like other dense methods, uses all
available data from each input depth image. It does so in a
parallel fashion, allowing for accurate registration and high
quality scene reconstruction at an update frequency of up to
16 Hz (depending on size and resolution of the reconstructed
volume). The accuracy of the environment mapping and ego-
motion estimation is comparable to current dense reconstruc-
tion methods employing commodity structured light sensors.
We show that even though our algorithm may accumulate
drift over time, it compares well to modern SLAM-based
methods that operate on sparse features, while featuring near
real-time perrformance on a system without a GPU.

The next section provides a review of the TSDF as a
3D representation, followed by details of the camera pose
estimation algorithm. We present results on an RGB-D
benchmark for hand-held SLAM algorithms and finalize with
a few concluding remarks.

II. 3D TSDF REPRESENTATION

The properties and methods related to the 3D TSDF
representation are very well documented in the work of
Curless and Levoy [6] and more recently reviewed in the

1http://code.google.com/p/oru-ros-pkg/. 2012
2the OpenMP Architecture Review Board, The OpenMP API specification

for parallel programming, http://www.openmp.org (accessed 2012/09)

work of Newcombe et al. [5]. For convenience we will briefly
describe the representation below.

The representation used in this work is a TSDF, based
on projective measurements. The TSDF is a voxel-based
data structure in which each cell in a 3D grid stores an
approximate distance to the nearest surface. A 2D illustration
is shown in Fig. 1 and a real example, following the same
color convention, is given in Fig. 2. For any given voxel,
its distance value is computed as the difference in depth
between its coordinates and the coordinates of the nearest
measured surface point. The comparison is made in the frame
of reference of the camera. The resulting distance assumes
positive values for voxels located in the free space observed
in front of surfaces and negative values for voxels that are
situated behind observed surfaces. The difference in sign is
then used to define a region of “zero distance”, which im-
plicitly represents the actual surface of objects. The distance
values are truncated at pre-defined positive and negative
limits, Dmax and Dmin, respectively. The truncation limits
the impact of new observations in the environment to local
changes. Furthermore, a true signed distance function cannot
be computed with certainty from partial observations, since
there is no information as to how far the negative side should
extend on the unseen side of surfaces.

To accurately represent a surface using a TSDF, at least
one non-truncated voxel is needed on both sides of a surface.
In this non-truncated region it is then possible to interpolate
between a negative (inside) and positive (outside) voxel to
obtain an estimated location for the surface (represented by
zero). However, in this work the TSDF is not only used
to represent the surface, but also directly model the error
of a given point with respect to the current model, and
provide a gradient towards the surface. To estimate this
gradient, our method typically requires the number of non-
truncated voxels on either side to be larger than strictly
needed for surface representation. The thickness of this non-
truncated region needs to be related to the amount of physical
camera movement that is expected between frames. It is
important to note that the thickness on either side need
not be symmetric and should preferably be kept small on
the negative side, since it sets a limit for the minimum
dimensions of reconstructed objects.

To improve the quality of the surface reconstruction and
robustness to outliers, each voxel stores not only a signed
distance, but also a weight W that corresponds to the
certainty of the distance value in the cell. As been suggested
by [5], [6] either a uniform weight can be used, producing
a “rolling average”, or the weight W can be related to an
error model of the depth camera. In both cases, the update
of the weight and distance values is as follows [6]:

Dn(x)n+1 =
Dn(x)Wn(x) + D̂n(x)Ŵ (x)

W (x)n + Ŵ (x)
, (1)

W (x)n+1 = min(W (x)n + Ŵ (x),Wmax), (2)

where Dn(x)n+1 is the updated distance at location x based
on the estimate D̂n(x). The weight W (x)n is the accumu-

Fig. 1. This figure illustrates how a TSDF is generated from a depth
image. The coordinates of each voxel are projected into the image plane
and their depth (or “z-value”) relative to the camera is compared with that
of the nearest pixel in the depth image. The result of this comparison is
written into the voxel. Positive (green) values are truncated to a pre-defined
maximum. Negative (red) values less than a pre-defined minimum are not
stored. White cells are those that have not yet been observed by the sensor.

lated sum (up to a limit Wmax) of weights Ŵ (x), associated
with the distances estimated for a particular position in the
voxel grid. Limiting the value of W allows for the model
to change in order to represent new configurations of the
environment and react robustly to dynamic elements. The
volume update can be efficiently done in parallel, since no
dependence is assumed between voxels.

III. ESTIMATION OF CAMERA POSE

A. Notation

Formally, a depth image is a scalar function zn(M) that
assigns a depth to all pixels of each of the n = 0 . . . N depth
images in a video stream. The domain of zn is defined on
the 2D image plane M ∈ R2. Formally, zn : M → R+.

Given zn(M), and knowing the parameters of the depth
camera, 3D surface points can be computed. Let sn(M)
be the projection of a depth image pixel into 3D. Formally,
sn : R2 × R→ R3,

sn(m) =


m1−cx

fx
zn(m)

m2−cy
fy

zn(m)

zn(m)

 , (3)

where m = (m1,m2) ∈M represents an image pixel and
cx, cy, fx, fy ∈ R represent the principal point and focal
lengths of a pinhole camera model. The definition of a 3D
rigid-body transformation, T ∈ R4×4 ∈ SE(3) used in
registration of points is,

T =

[
R t
0T 1

]
(4)

where R ∈ R3×3 ∈ SO(3) is a 3D rotation matrix, t ∈ R3

is a translation vector and 0T is a zero vector of appropriate
dimensions. Close to T = I , with I being a 4 × 4 Identity
matrix, we can accurately represent T as T = e∆tξ̂, where e
is the matrix exponential function, ∆t is a duration of time

Fig. 2. Left: Raycasted 3D reconstruction with color corresponding to
surface orientation. Right: 2D slice through the corresponding TSDF vol-
ume, red/green indicate negative/positive sign, brightness indicates absolute
values (brighter is higher). Unseen areas are marked as white, following the
same convention as in Fig. 1.

(regarded here as unitary) and ξ ∈ R6 ∈ se3 is a vector
representing angular and linear velocities, i.e.

ξ =
[
ω1 ω2 ω3 v1 v2 v3

]T
(5)

and ξ̂ ∈ R4×4 is the matrix,

ξ̂ =


0 −ξ3 ξ2 ξ4
ξ3 0 −ξ1 ξ5
−ξ2 ξ1 0 ξ6

0 0 0 0

 . (6)

With these definitions, T can be expressed as a function of
ξ, as long as it remains in the neighbourhood of ξ = 0.

B. Objective Function

In order to define an appropriate objective function, we
first examine a measure of error as the sum of squared
distances between corresponding points in 3D, from two
consecutive images, i.e.,

E =

M∑
i

‖sn(mi)− sn+1(mj)‖2. (7)

such that for every i we assume that there is a mapping to
j denoting the corresponding pixels in the subsequent image
frame. To bring these points into alignment, a transformation
is applied to one of the two sets. For convenience we will use
a dot to denote a vector written in homogeneous coordinates,
e.g., u̇ =

[
u
1

]
, defining an optimization objective as,

min.
ξ

M∑
i

‖ṡn(mi)− T (ξ)ṡn+1(mj)‖2. (8)

Let Dn(x) be the TSDF, generated from the past n depth
images, as described in Sec. II (for this work updating of
Dn(x) is done through a simple rolling average over past
measurements). Using, Dn(x), the above objective can be
approximated as,

min.
ξ

M∑
i

‖Dn(T (ξ)ṡn+1(mi))‖2. (9)

In other words, we are minimizing the sum of squared point-
to-model distances, over the space of transformations of the
points relative to the model. Note that we no longer require
an explicit mapping between i and j.

C. Solution

We obtain the solution of the optimization problem defined
in (9) by linearizing the objective function by means of a
first-order power-series approximation around ξ = 0, i.e.,

Dn(T (ξ)ṡn+1(mi)) ≈
Dn(T (ξ)ṡn+1(mi))|ξ=0+

∇ξDn(T (ξ)ṡn+1(mi))|ξ=0ξ. (10)

The assumption that we are close to ξ = 0 holds as long as
the inter-frame movement is small, which is true, granted
that the camera speed or the time taken to process each
depth image is not excessive. Noting that T = I for ξ = 0,
Eq. (10) simplifies to,

Dn(T (ξ)ṡn+1(mi)) ≈
Dn(ṡn+1(mi)) +∇ξDn(ṡn+1(mi))ξ. (11)

In (11) we identify the summand to the Jacobian matrix as,

J(mi) = ∇ξDn(ṡn+1(mi)), (12)

where J(mi) ∈ R1×6 and return to (9) to plug the new
definitions back into the objective.

min.
ξ

M∑
i

‖Dn(ṡn+1(mi)) + J(mi)ξ‖2. (13)

Expanding the square and simplifying the algebraic expres-
sion we end up with,

min.
ξ

M∑
i

ξTJ(mi)
TJ(mi)ξ+

2ξTJ(mi)
TDn(ṡn+1(mi)) +Dn(ṡn+1(mi))

2. (14)

Carrying out the sum over the pixels in M for the terms
dependent on ξ, we can define the following matrix and
vector, respectively,

H =

M∑
i

J(mi)
TJ(mi), (15)

g =

M∑
i

J(mi)
TDn(ṡn+1(mi)). (16)

Differentiating (14) with respect to ξ and equating the result
to zero, we find the least-squares solution ξ? by,

ξ? = −H−1g. (17)

The set of points are transformed by T (ξ?) and the process
is repeated for several iterations. The estimated transform
represents the incremental change between the current pose
and the previous frame. Since the parametrization of T (ξ)
is only valid locally around ξ = 0 we reset ξ to zero and
pre-transform each newly arrived depth image with a global
transformation matrix T̄n+1 = T (ξ?)T̄n, with T̄0 = I ,
representing the pose change since the beginning of tracking.

Though it is not strictly necessary for convergence, we
iterate using a coarse-to-fine sub-sampling on the input
depth image, as this provides significant speed-ups in the

registration by providing a fast initial alignment [7]. A fixed
number of iterations are performed on each level of detail,
or until the change in the optimization parameter falls below
some pre-defined threshold.

To improve the basin of convergence for the solution,
we scale the contribution of each measurement, based on
a weighing function. This produces the standard iteratively
reweighed least-squares algorithm, changing (15) and (16) to

Hw =

M∑
i

w(Dn(ṡn+1(mi)))J(mi)
TJ(mi), (18)

gw =

M∑
i

w(Dn(ṡn+1(mi)))J(mi)
TDn(ṡn+1(mi)).

(19)
The weighing function w(x) characterizes an M-estimator
[8] for which a sensible choice is the Huber estimator [9].
It can be defined as,

w(x) =

{
1.0 if |x| <= k
k
|x| otherwise , (20)

where k is a small constant (e.g. a tenth of the size of one
voxel). It may also be beneficial to extend this weighing
function to include an error model of the sensor, e.g. reducing
the influence of measurements made at greater distance.

Lastly, we note that adding a small cost related to the norm
of the parameter vector ξ itself (a regularizer), has benefits in
situations where the solution would otherwise tend to oscil-
late around the minimum or lead to very inaccurate results.
This typically happens when the solution is not adequately
constrained by the geometry seen in the environment. Adding
ξTWξ into (12), where W ∈ R6×6 is a diagonal matrix
attributing cost to the norm of each individual component of
ξ, results in,

Hw,r =

M∑
i

W + w(Dn(ṡn+1(mi)))J(mi)
TJ(mi),

(21)
where W = αI , I being the 6 × 6 Identity matrix and α
a linearly increasing function of the number of the current
solution iteration. Large values for α will tend to dampen
the amount of change made to the parameter vector at each
iteration and such dampening is only interesting once the
solution is close to optimal. To summarize, a high-level
overview of the system is provided in Fig. 3.

D. Limitations

A general downside of dense volumetric scene repre-
sentations are the large memory requirements for storage
at high resolution. Recent work (e.g. [10],[11]) allows the
reconstructed volume to move, providing pose estimation
across larger distances, but maintaining the dense surface
reconstruction around the current sensor location. Other
approaches, based on non-uniform divisions of space (rather
than a fixed-size cubical lattice) have been proposed (e.g.
[12]) and can also be used to increase the represented space,
without additional memory use.

Measurements
Compute

surface points

Input: zn+1(M)

Pose Estimation
minimization of
sum of signed

distances squared

Reconstruction
Integrate

measurements
into TSDF

sn+1(M)

Tn+1(ξ?)

Dn(x)

Fig. 3. Main components of the system, and information flow

Since our method uses the TSDF to represent alignment
error, it needs a distance function that is truncated at larger
values than methods that simply use the TSDF as a scene
representation. The surface points measured in the second
frame need to be within a region where numerical derivatives
can be computed (see Eq.(12)) given the motion between
two consecutive video frames. Since the truncation occurs at
larger values, the method is unable to reconstruct details as
fine as what would be possible using separate representations
for tracking and mapping.

Apart from these limitations, the proposed method may
lose track of the pose if the assumption that we are close to
the solution does not hold or if the currently viewed geometry
does not offer enough variation to constrain all six degrees
of freedom, causing H to be close to singular.

IV. RELATED WORK

The presented method is a fast approach to solving the
implied registration problem of camera-tracking. It is similar
to the approach presented by Fitzgibbon as Fast ICP using the
distance transform (FICP) [9]. However, the full Euclidean
distance transform (EDT) used by FICP is too costly to
compute for the on-line scenario in the scope of this work.
Due to the distance values being unsigned, surface extraction
also becomes less straightforward. A signed version of the
EDT is similarly costly, but provides additional challenges
when faced with partial observations [13]. Both for sake
of speed, and due to incomplete observations of the envi-
ronment, we avoid computing the Signed EDT, and instead
proceed as detailed in Sec. II. As an analogy, one can think
of the presented method as pre-computing an approximate
closest-point distance throughout the entire volume, making
evaluations as simple as accessing a look-up table, without
the need for matching corresponding points explicitly. The
Kinect Fusion algorithm to which we compare our results,
solves the camera tracking problem by maintaining an up-
dated TSDF from which it can generate virtual depth images
by means of ray-casting from a virtual sensor. Using the
depth images from the virtual camera and the actual sensor,

TABLE I
COMPARATIVE RESULTS, THE PROPOSED ALGORITHM (OURS), AN OPEN-SOURCE IMPLEMENTATION OF THE KINECT FUSION ALGORITHM

(PCL-KINFU), FEATURE-BASED NORMAL DISTRIBUTIONS TRANSFORM REGISTRATION (NDT-F) AND RGB-D SLAM

Abs err. [m] Rel err. [m] Rel err. [deg]
Dataset Algorithm RMS max RMS max RMS max

rgbd dataset freiburg1 xyz
Ours 0.014 0.036 0.003 0.012 0.472 1.810

PCL-KinFu 0.023 0.070 0.004 0.056 0.474 1.738
(trajectory length: 7.112 m) RGB-D SLAM 0.014 0.035 0.006 0.021 0.353 1.633

NDT-F 0.068 0.125 0.014 0.228 0.844 11.137

rgbd dataset freiburg1 desk Ours 0.033 0.079 0.007 0.051 0.759 3.336
PCL-KinFu 0.073 0.256 0.020 0.272 2.003 28.317

(trajectory length: 9.263 m) RGB-D SLAM 0.026 0.079 0.012 0.063 0.731 6.855
NDT-F 0.072 0.122 0.019 0.176 1.405 15.358

rgbd dataset freiburg1 desk2 Ours 0.230 0.378 0.019 0.246 1.080 9.785
PCL-KinFu 0.102 0.312 0.020 0.194 1.795 28.660

(trajectory length: 10.161 m) RGB-D SLAM 0.043 0.183 0.018 0.218 1.067 9.632
NDT-F 0.114 0.249 0.018 0.107 1.219 9.241

rgbd dataset freiburg1 floor Ours 0.984 2.573 0.050 0.462 2.085 35.172
PCL-KinFu 0.918 1.936 0.035 0.435 1.718 25.175

(trajectory length: 12.569 m) RGB-D SLAM 0.035 0.085 0.004 0.027 0.292 1.929
NDT-F 0.269 0.556 0.025 0.327 0.888 10.728

TABLE II
PARAMETERS USED DURING EVALUATION

Parameter value
Voxels 320× 320× 320
Voxel size [m] 0.03
truncation (positive) [m] 0.1
truncation (negative) [m] −0.06
Huber constant k [m] 0.003
Iteration levels 3
Downsampling / level ×4,×2,×1
Iterations / level 12, 6, 2
Regularization α 0.001× iteration count
Stopping condition (interrupts current level) ∆‖ξ‖ < 0.0001

a multi-scale point-to-plane ICP method is used to compute
a transformation between them. The update of the TSDF
is achieved in the same way as in this work. Interesting to
note, is that the Kinect Fusion algorithm could be modified
to work just as well with a different model representation
(as long as a dense depth image can be generated from it).
This is quite different from our method, in which the model
representation and the cost function are inseparable.

V. RESULTS

To evaluate the accuracy of the proposed algorithm in
an off-line setting, we tested on a subset of the RGB-D
datasets from the “hand-held SLAM” category, provided by
the CVPR group at the Technical University of Munich
[4]. The parameters and constants introduced in Sec. III
are listed in Table II with the values used throughout the
benchmark. We evaluate the accuracy of our algorithm by
computing the absolute trajectory error, relative position error
and relative orientation error as indicated in [4]. We compare
the results to those of Kinect Fusion (as implemented by
the Point-Cloud Library3 [14]) and to two algorithms that
use depth information in conjunction with visual features,
namely RGB-D SLAM [15], and feature-based 3D Normal
Distributions Transform (NDT-F) [16].

3Open Source Kinect Fusion implementation, PCL:
http://svn.pointclouds.org/pcl/trunk, accessed: Sept. 2012.

As can be seen in Table I, our method achieves similar
performance to the tested visual feature-based methods, in
spite of tracking from depth alone and not performing any
pose-graph optimization. Our method slightly outperforms
the reference implementation of Kinect Fusion on the “desk”
and “xyz” datasets but fares slightly worse on the “desk2”
and “floor” sets. It is interesting to note that RGB-D SLAM
typically has a larger inter-frame error but, due to global
optimization and loop-closures, achieves a smaller absolute
error. Compared to the results obtained using NDT-F around
visual features, we generally achieve better results. This is
expected, since NDT-F is a frame-to-frame method and can
therefore not take advantage of a map with reduced noise. A
notable exception to these statements is the rather poor per-
formance of the proposed algorithm on the “floor” sequence.
A closer look at the relative errors in pose estimation for
that data set, shown in Fig. 4(a) reveals large spikes both in
the rotational and translational error, occurring after ca. 25s.
Looking at the input data for which this error is produced,
we note that it is indeed a representative example for one
of the failure modes discussed in Sec. III-D (namely, H
close to singular due to lack of features). The Kinect Fusion
algorithm produces similar behaviour, for the same reasons.

The run-time of our algorithm, as measured on an Intel
Core i7-3740QM (2.70 GHz, 4 cores) CPU depends on the
number of voxels used and is presented in Fig. 4(b). Perfor-
mance scales up with the number of cores available on the
system and their speed. The algorithm spends the majority of
its time evaluating the TSDF which requires fetching eight
floating-point values from memory, performing a tri-linear
interpolation between them and casting the result to a double-
precision value. This operation is needed to compute the
error associated with a surface point, but also to compute
the derivative of the error relative to position.

VI. CONCLUSIONS

We have presented a camera-tracking method that uses the
3D scene representation directly as a cost function to perform
6 DoF alignment of 3D surface points. The trajectories

(a) (b) (c)

Fig. 4. Fig. 4(a): Relative errors — translation (top) and orientation (bottom). A large spike is seen in both graphs at ca. 25s, caused by an insufficiently
constrained solution for the depth-based algorithms. Fig. 4(b): The time required to process each frame increases with the number of voxels. Fig. 4(c):
Example reconstruction from the fb1 xyz dataset, using 4003 voxels with 0.006m edge length.

estimated by our method, on a well-known dataset, are
comparable to those of current state of the art methods,
including algorithms which, in addition to depth also em-
ploy visual features. Our main contribution lies in a direct
model-based approach to on-line registration, as opposed to
generating virtual sensor data from a model and performing
registration in a sensor-centric frame of reference. This
allows high quality surface reconstruction (e.g. Fig. 4(c))
and accurate pose estimation to be done on systems without
a GPU. However, in lack of standardized implementations
for both CPU and GPU architectures, practical comparisons
to other algorithms in terms of computational complexity
are difficult make. In addition, we make our implementation
freely available to the benefit of the robotics community for
use and verification of our results.

In future work, alternative objective functions, based on
the point-to-plane [17] metric could be used for better
convergence, at a modest increase in computational cost.
Embedding information about local texture into the TSDF
may provide additional improvements for situations where
depth alone is insufficient to successfully estimate the sensor
motion.

ACKNOWLEDGMENT

D.R.C. thanks R. A. Newcombe, S. Lovegrove and J.
Sturm for explanations, inspiration and support in the course
of this work. This work has partly been supported by
the European Commission under contract number FP7-ICT-
270350 (RobLog).

REFERENCES

[1] R. Newcombe, S. Lovegrove, and A. Davison, “Dtam: Dense tracking
and mapping in real-time,” in Computer Vision (ICCV), 2011 IEEE
Int. Conf. on. IEEE, 2011, pp. 2320–2327.

[2] A. Fuhrmann, G. Sobottka, and C. Gross, “Abstract distance fields for
rapid collision detection in physically based modeling,” in Int. Conf.
on Computer Graphics and Vision (Graphicon), 2003, pp. 58–65.

[3] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[4] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
IEEE Int. Conf. on Intelligent Robot Systems (IROS), 2012.

[5] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “Kinectfusion:
Real-time dense surface mapping and tracking,” in Mixed and Aug-
mented Reality (ISMAR), 10th IEEE Int. Symp. on, 2011, pp. 127–136.

[6] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. of the 23rd conf. on Computer
graphics and interactive techniques. ACM, 1996, pp. 303–312.

[7] D. Ricao Canelhas, “Scene representation, registration and objectde-
tection in a truncated signed distance functionrepresentation of 3d
space,” Master’s thesis, Örebro University, 2012.

[8] Z. Zhang, “Parameter estimation techniques: A tutorial with applica-
tion to conic fitting,” Image and vision Computing, vol. 15, no. 1, pp.
59–76, 1997.

[9] A. Fitzgibbon, “Robust registration of 2d and 3d point sets,” Image
and Vision Computing, vol. 21, no. 13, pp. 1145–1153, 2003.

[10] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” in Proc.
of RSS workshop on RGB-D: Advanced Reasoning with Depth Cam-
eras, 2012.

[11] H. Roth and M. Vona, “Moving volume kinectfusion,” in British
Machine Vision Conf.(BMVC),(Surrey, UK), 2012.

[12] S. Frisken, R. Perry, A. Rockwood, and T. Jones, “Adaptively sampled
distance fields: A general representation of shape for computer graph-
ics,” in Proc. of the 27th conf. on Computer graphics and interactive
techniques, 2000, pp. 249–254.

[13] P. Mullen, F. De Goes, M. Desbrun, D. Cohen-Steiner, and P. Al-
liez, “Signing the unsigned: Robust surface reconstruction from raw
pointsets,” in Comp. Graphics Forum, vol. 29, 2010, pp. 1733–1741.

[14] R. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
Robotics and Automation (ICRA), IEEE Int. Conf. on, 2011, pp. 1–4.

[15] N. Engelhard, F. Endres, J. Hess, J. Sturm, and W. Burgard, “Real-time
3d visual slam with a hand-held rgb-d camera,” in Proc. of the RGB-D
Workshop on 3D Perception in Robotics at Euron Forum, 2011.

[16] H. Andreasson and T. Stoyanov, “Real time registration of rgb-d data
using local visual features and 3d-ndt registration,” in SPME Workshop
at Int. Conf. on Robotics and Automation (ICRA), 2012.

[17] C. Yang and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, vol. 10, no. 3, pp. 145–
155, 1992.

