Estimating the 3D Position of Humans wearing a
Reflective Vest using a Single Camera System

Rafael Mosberger and Henrik Andreasson

Abstract This paper presents a novel possible solution for people detection and es-
timation of their 3D position in challenging shared environments. Addressing safety
critical applications in industrial environments, we make the basic assumption that
people wear reflective vests. In order to detect these vests and to discriminate them
from other reflective material, we propose an approach based on a single camera
equipped with an IR flash. The camera acquires pairs of images, one with and one
without IR flash, in short succession. The images forming a pair are then related to
each other through feature tracking, which allows to discard features for which the
relative intensity difference is small and which are thus not believed to belong to
a reflective vest. Next, the local neighbourhood of the remaining features is further
analysed. First, a Random Forest classifier is used to discriminate between features
caused by a reflective vest and features caused by some other reflective materials.
Second, the distance between the camera and the vest features is estimated using a
Random Forest regressor. The proposed system was evaluated in one indoor and two
challenging outdoor scenarios. Our results indicate very good classification perfor-
mance and remarkably accurate distance estimation especially in combination with
the SURF descriptor, even under direct exposure to sunlight.

1 Introduction

People detection is an important task in both autonomous machines and human oper-
ated vehicles equipped with driver assistant technology. Especially when it comes to
applications where machines operate in industrial workspaces shared with humans,
it plays a crucial role towards improved safety for the operators. Different sensor
modalities have been commonly used in people detection including laser scanners,
thermal cameras and vision-based systems. All approaches suffer from drawbacks
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in safety critical applications. Thermal cameras are expensive and their use depends
on the ambient temperature. Laser scanners are also expensive and can fail under
extreme conditions such as direct sunshine into the sensor. Vision-based systems
offer appealing solutions since they can be inexpensive but require that the ambient
illumination is neither too strong nor too weak. Yet, for the application in safety sys-
tems for industrial environments, reliable people detection in a variety of different
conditions is critical.

In many industrial workplaces such as manufacturing areas, construction sites,
warehouses or storage yards the wearing of a reflective safety vest is a legal re-
quirement. In contrast to more general approaches, the work presented in this paper
therefore takes advantage of the enhanced visibility of a person due to the reflective
vest to facilitate the detection. Andreasson et al. [2] introduced a people detection
system based on a single camera unit which was successfully used to detect humans
wearing a reflective vest. The core principle of the detection system is to take two
images in short succession, one with and one without IR flash, and to process them
as a pair. The processing scheme identifies regions with a significant intensity differ-
ence between the two images in order to detect locations where reflective material
appears.

The system proposed in this paper is an extension of the work presented in [2].
The extended system allows not only for detection of people wearing reflective vests
but also adds estimation of the 3D position for individual vest features. A machine
learning approach is applied in order to estimate the position of a reflective vest
based on the description of an image patch extracted from the neighbourhood of the
location where the vest was detected in the image.

This paper is organised as follows. Sect. 2 briefly discusses related work in the
field of vision-based people detection. In Sect. 3, the complete vest detection and
position estimation system is described in detail. The section is divided into a part
dedicated to the detection of reflective vest features (Sect. 3.1) and a part describing
the estimation of a 3D position corresponding to each detected vest feature (Sect.
3.2). In Sect. 4, the performance of the system is evaluated in different environments
and conclusions and an outlook on future work are presented in Sect. 5.

2 Related Work

Vision-based people detection for non-stationary environments has been extensively
studied for applications in robotic vehicles, (semi-)autonomous cars, driver assistant
systems and surveillance. State-of-the-art techniques mainly rely on either the de-
tection of individual body parts or the analysis of templates. Both techniques are
commonly used in combination with machine learning techniques. The state-of-the-
art method of template based techniques uses the Histogram of Oriented Gradients
(HOG) descriptors [8] computed on a dense grid of uniformly spaced cells. The de-
scriptors are fed into a detection system consisting of a binary classifier obtained by
supervised learning. Body part based detection systems follow a different approach
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by representing the body as an ensemble of individual parts pairwise connected with
a spring-like link. In [9], the different body parts are represented using a simple ap-
pearance model and arranged in a deformable configuration to obtain a pictorial
structure which is then matched to the images to be observed.

The performance of vision-based techniques heavily depends on the presence of
good visible structures in the images, and thus on a sufficient illumination of the
observed scene. Their application is not suitable for dim or completely dark envi-
ronments. Also, vision-based approaches typically struggle in cases where people
have little contrast with the background. For these reasons, existing people detection
approaches are not directly applicable in a safety system supposed to operate under
challenging conditions, such as rain, snow or direct exposure to sunlight.

The system presented in this paper focuses on the detection of people wearing a
reflective vest using active IR illumination. The detection of retro-reflective material
has been successfully applied in motion capture systems where passive markers are
used in combination with an array of IR or visible-light LEDs mounted around the
lens of one or several cameras in order to detect selected spots on the human body
[7]. Yet, to the best of the author’s knowledge, there exists no people detection
system that makes use of the reflective vest properties in the detection process.

Instead of analysing single images as it is done in most of the related work, our
system processes a pair of images one of which is taken with an IR flash and one
without. The proposed algorithm exploits the fact that the IR flash is very strongly
reflected by the vest reflectors to detect locations in the image where a large inten-
sity difference exists between the two images. Andreasson et al. show in [2] that
especially in the mid- and long-range people detection where spatial resolution de-
creases rapidly in the image, their approach clearly outperforms a state-of-the-art
people detection algorithm (Histogram of Oriented Gradient, HOG) applied to a
single image.

3 System Description

The reflective vest detection and position estimation system presented in this paper
is described in two parts. Sect. 3.1 is dedicated to the detection of reflective vest
features in the input images while Sect. 3.2 describes the estimation of a 3D position
for each detected vest feature. For a schematic overview of the complete system,
individual processing steps as well as the data flow in the system see Fig. 1.

3.1 Vest Detection

The upper part of Fig. 1 depicts the detection scheme employed to detect persons
wearing reflective vests. The detection system works by comparing two images, one
acquired with IR flash, /7, and one taken without, I,s. A feature detector is used to
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Fig. 1 Overview of the reflective vest detection and position estimation system

identify the set Fy,, of high intensity blob-like interest points in the image /7. Sub-
sequently, the features detected in Iy are tracked in I,,r and, based on the output of
the tracker, a subset of features is discarded as not belonging to reflective material
and thus not originating from a reflective vest. Features are discarded if they can be
tracked and if the intensity difference between the two images is below a set thresh-
old. This pre-selection process is further described in Sect. 3.1.3. Finally, a binary
random forest classifier, trained by supervised learning is used to discriminate vest
features from non-vest features.
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Fig. 2 Example of an image pair taken in short succession. The image on the left was taken with
IR flash and the image on the right without. The images show a panoramic view which is obtained
by unwrapping of the raw fish-eye images. The difference in intensity values at locations where
the reflective vest appears is clearly visible. The filled white circle at the bottom right represents
a lens artifact originating from direct sunshine into the camera. It may be noted that the overall
brightness of the images is very low due to the use of the IR band pass filter in the camera system.

3.1.1 Hardware and Image Acquisition

The camera unit consists of a standard monochrome CMOS sensor with a resolution
of 752 x 480 pixels and a fish-eye lens with an approximate FOV of 180 degrees. 8
IR LEDs with a wavelength of 850 nm are placed in a ring around the camera. The
orientation of the LEDs assures a wide and relatively uniform illumination of the
scene in the camera’s FOV. A band pass filter with a center wavelength of 852 nm
and a full width at half maximum of 10 nm is mounted between the lens and the
sensor. The filter corresponds to the dominant IR wavelengths of the IR LEDs.

The image acquisition involves taking a pair of images, one with IR flash and
one without. An exemplary pair of panoramic images, obtained from the raw fish-
eye images is depicted in Fig. 2. The time increment ¢, between the acquisition
of the two images is kept as short as possible in order to minimize the difference
between the two images due to changes in viewpoint and changes in the scene. The
raw fish-eye images are unwrapped to represent a panoramic view containing the
area of interest for the reflective vest detection. The unwrapped flash image /; and
the unwrapped non-flash image 1, form the image pair I = (I7,1,y) on which all
the post-processing is based.

3.1.2 Feature Detection

The reflection of the IR light by the reflectors of a vest results in high intensity blob-
like regions at locations where the vest appears in the image /. Shape and size of
the high intensity regions depend heavily on the distance between the camera unit
and the person wearing the vest as well as on the body pose of the person. Especially
at short distances, the reflective markers of a vest appear as elongated regions rather
than as circular blobs.

The first step in the vest detection process consists in identifying locations in
the image /Iy where such high intensity regions appear. It was shown in [2] that the
STAR algorithm by Konolige et al. which is a speeded-up version of the CenSurE
feature detector [1] yields good results. The STAR detector produces a set of raw



6 Rafael Mosberger and Henrik Andreasson

features, named F,,,,, in which every feature is described by the image coordinate
pair u = (u,v) indicating the location in the image /; where it was detected.

An exemplary result of the feature detection is given by the ensemble of crosses
in the upper image of Fig. 3. The example illustrates that under the influence of
the IR illumination from the flash and the sun, the detected feature set F,,,, includes
many features that do not originate from a reflective vest. Also it is worth mentioning
that due to the STAR algorithm’s sensitivity to circular shapes, one reflective vest
marker can be detected more than once (cf. Fig 3), especially when its shape appears
elongated.

3.1.3 Feature Tracking and Intensity Check

The detected features in the set F,,,, originate either from a reflective vest or from
another bright object in the FOV of the camera. As the images I and I,y were taken
in short succession, the appearance of non-vest features is assumed to change little
from one image to another. In contrast, this brightness constancy assumption is not
valid for features originating from a reflective vest since the intensity values in the
vicinity of a vest feature differ considerably for the image pair 1. Based on this
property, the first processing step to eliminate non-vest features consists in tracking
raw features, detected in image Iy, in the corresponding image taken without IR
flash, 1,7, and perform a check on the intensity difference between the image patches
surrounding the detected and the tracked feature locations.

The tracking of the features is performed using a pyramidal implementation of
the Lucas-Kanade feature tracker [4]. The tracker is based on the assumption that
the temporal increment between two consecutive images is small enough such that
the location of a feature changes little from one image to another. As the images I
and I,y are taken in very short succession, this is the case. Furthermore, the tracker
assumes brightness constancy.

In the case of vest features, the tracker is typically unable to find any suitable
match in the image I, because the brightness constancy assumption does not hold
true. Thus, features that failed to be tracked are added to the set of reflection based
features F, sy It is worth noting that in contrast to the standard application of
a feature tracker, we are not only interested in features that can be successfully
tracked. We specifically identify features that cannot be tracked as possible vest
features.

In the case of non-vest features, where the brightness constancy assumption holds
true, the tracker typically finds the corresponding location in the non-flash image I, ¢
and an intensity difference check within a square window of size w; surrounding the
feature can be performed. If the average difference between the pixels in the window
is above a threshold #; the feature is declared reflection based (and exceptionally
tracked) and added to the feature set Fy, ... Otherwise, this is not the case and the
feature is considered to originate from an area without reflective material and will
not be further processed.
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3.1.4 Feature Description and Classification

The set Fy. s, typically contains features that originate from the reflection of the
IR light on a reflective material. Yet, other reflective objects than the reflective vest
markers can appear in the scene, such as metallic surfaces, windows, mirrors or
reflective floor and wall marking tape. An additional processing step therefore aims
at classifying the features collected in the set F f/., into a set of vest features Fyey
and a set of non-vest features F,p,ves:-

The additional processing step is also motivated by the fact that extreme camera
movements that cause strong motion blur can result in a high number of detected
features that can not be successfully tracked in the image I, . In such cases, the set
Frefiex, supposed to contain mainly features representing reflective materials, would
contain many other undesired features.

The classification is not performed by directly evaluating the raw intensity values
of the image. Instead, a local image descriptor is extracted from the neighborhood
of each detected feature in F,. ., and serves as input for the classifier. The descrip-
tor is extracted from a square image patch of size w, centered at the location where
a reflection based feature was detected in image /. Requirements for an appropri-
ate descriptor include robustness to illumination changes, motion blur and noise as
well as computational efficiency of the extraction process. State-of-the-art feature
descriptors that were found appropriate include SURF [3] and BRIEF [6].

A random forest classifier [S5] is then applied to classify all features in the set
Frefiex. The forest is an ensemble of n, binary decision trees with a randomized
selection of descriptor variables on which a tree splits. Thus, the classification of a
feature descriptor with the random forest classifier provides n, individual votes, one
per each tree in the forest. The probability that a reflection based feature represents a
reflective vest can be inferred by dividing the number of trees voting for a reflective
vest by the total number of trees n; in the forest. In a supervised learning task, the
random forest classifier is trained on a set of descriptors that are manually labelled
with a tag indicating whether the descriptor corresponds to a vest feature or not.

3.2 3D Position Estimation

The lower part of Fig. 1 depicts the two steps the system performs in order to esti-
mate a 3D position for features that were detected in /; and classified as belonging
to the set of vest features F,.g. First, the system estimates the distance of a vest fea-
ture with a machine learning approach before exploiting the intrinsic camera model
together with the distance estimate to produce a 3D position estimate.
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Fig. 3 The figure shows an exemplary result of the vest detection process. Blob-like features are
detected in the image /; taken with IR flash (above). Detected features are represented by the
ensemble of crosses in Ir. The detected features are then tracked in the image I,y taken without
IR flash (below). The detection area in Iy is restricted to the white bounding box to allow features
to be tracked even in the case of quick rotational movements. Successfully tracked features are
marked as white crosses in image /; and the tracked locations are indicated by white crosses in
image I,7. All tracked features in the above example show a very low intensity difference and are
therefore not considered as vest candidates. Features that failed to be tracked include detections on
the reflective vest as well as on the metallic surface of the car standing right in front of the camera.
All the untracked features are considered as vest candidates and classified by the random forest
model. A black square is drawn around features that are finally classified as vest features.

3.2.1 Distance Estimation

The same local image descriptors used for the feature classification described in
Sec. 3.1.4 are employed to estimate the distance of a reflective vest feature based on
machine learning. Using supervised learning we train a random forest regressor on a
set of descriptors that are labelled with the ground-truth distance between the camera
and the reflective vest that caused the appearance of the corresponding vest feature.
The trained model is then applied to obtain a distance estimate d for descriptors of
unseen vest features.
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A strong emphasis has to be made on the rotation and scale invariance of the
feature descriptors adopted in the underlying system. The size of a reflective vest
pattern in the image Iy decreases with increasing distance between the vest and the
camera. As we aim to estimate the distance to the vest based on the local image
descriptor, scale invariance is clearly undesired because it would make it impossible
for the regressor to consider the size of the patch. On the other hand, rotation invari-
ance would be beneficial for cases where the regressor has to estimate the distance
of an untrained vest feature which is just a rotated version of a trained feature.

In the case of BRIEF the descriptor is neither scale nor rotation invariant but
tolerates small amounts of rotation [6]. In contrast, the SURF descriptor is designed
to be rotation and scale invariant but this property only holds true if the SURF
descriptor is used in combination with the corresponding SURF feature detector
which provides a scale and an orientation for every detected feature. The STAR
feature detector used in our application does not provide any orientation for the
detected features. Thus, we extract the descriptors within a window of fixed size wy
and constant orientation of zero degrees and obtain BRIEF and SURF descriptors
that are neither scale nor rotation invariant.

3.2.2 3D Projection

The final step aims at estimating the 3D position relative to the camera for all fea-
tures in the set F,.5. Therefore, an intrinsic camera model of the camera system is
obtained by a calibration method dedicated to omni-directional cameras [10]. The
method assumes that the image projection function can be described by a Taylor
series expansion for which the coefficients are estimated in the calibration process.

Using the obtained camera model and given the image coordinates u = (u,v)
of the location at which a feature in F;,.; was detected, a ray in 3D space can be
inferred on which the object that caused the appearance of the feature in the image
must lie on. By further taking into account the distance d that was estimated for
the corresponding feature, a 3D point on the ray can be located leading to the final
position estimate x = (x,y,z) in the coordinate system fixed to the camera.

4 Experiments

The reflective vest detection and position estimation system has been evaluated in
three different test scenarios as listed in Table 1. A sensor unit consisting of the
camera system and a 2D laser range scanner (SICK LMS-200) both fixed to a solid
mechanical frame was used for the data acquisition. An extrinsic calibration was
carried out to obtain the position and orientation of the laser range scanner relative
to the camera [11]. The sensor unit is mounted at a height of approximately 1.5 m
on a mobile platform with four hard rubber wheels.
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Scenario  Environment Image Pairs 1
1 Indoors, warehouse-like environment 400

Outdoors, car parking area, sunny weather conditions 380
3 Outdoors, car parking area, direct sunshine into camera 100

Table 1 Test scenarios with number of acquired image pairs featured in the system evaluation

Several training and validation data sets were acquired for each scenario by si-
multaneously recording the raw camera images and the 2D laser readings. During
the acquisition of all data sets the mobile platform was moving at a speed of approx-
imately 0.5 m/s. One data set per scenario was held back for evaluation purposes
while the remaining sets served as training data. Table 2 summarizes the values of
the different system parameters used in the evaluation setup.

All the acquired data sets were preprocessed to detect the set of raw features Fq,
and to extract the corresponding local image descriptors. A BRIEF descriptor of 256
binary variables and a standard SURF descriptor of 64 floating point variables was
extracted for every feature. A ground-truth label was manually assigned to each de-
scriptor indicating whether it corresponds to a vest feature (label 1) or not (label 0).
Furthermore, the ground-truth distance between the camera and the person wearing
the vest was extracted from the laser readings and assigned to the descriptors.

A supervised learning process is applied to obtain the models of the feature clas-
sifier and the distance regressor. We trained a random forest on 45k extracted image
descriptors and the corresponding labels to obtain the classifier described in Sect.
3.1.4. Likewise, we trained a random forest on 30k image descriptors labelled as
vest features (label 1) and the corresponding ground-truth distance to the person to
obtain the regressor described in Sect. 3.2.1.

The evaluation was then performed by processing the validation data set of each
scenario and comparing the obtained results with the ground-truth labels assigned
during preprocessing. The main processing steps of the system according to Fig. 1
are evaluated individually.

Parameter Description Value
fa Image pair acquisition rate ~14 Hz
ta Time delay between the acquisition of /7 and 1,5 ~35 ms
w/h Width and height of the unwrapped input images Iy and 1,5 600x240 Pixel
b Feature detection window border size 40 Pixel
wi Window size for the intensity difference check 5 Pixel
ti Threshold for the intensity difference check 30.0
Wy Window size for the descriptor extraction 24 Pixel
n Number of trees in the random forest classifier/regressor 20

Table 2 Values of the various system parameters used for the evaluation setup
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Feature Detection

To evaluate its performance, the feature detector (Sect. 3.1.2) is applied on each im-
age Iy in the validation data sets resulting in a set of raw features F,,. If a reflective
vest is identified with at least one feature in Fy,,, the detection process for image I
is declared successful. Images in which no reflective vest appears are not considered
in the evaluation. The vest detection rate is defined as the ratio between images in
which the vest is successfully detected and the number of images showing a vest.

Table 3 shows the result of the feature detection evaluation. The data shows that
in nearly all images of scenarios 1 and 2 the detector reliably detects at least one raw
feature per reflective vest. In scenario 3 the camera faces the sun resulting in lens
artifacts frequently appearing in the images. The detector occasionally fails to detect
features intersecting with the lens artifacts which leads to a detection rate decreased
by approximately 10 %.

Feature Classification

In a second step we evaluate the system’s ability to correctly classify a set of de-
tected features F,,,, into a set of vest features F,,. and a set of non-vest features. The
evaluation assesses the performance of several processing steps as a group, namely
the feature tracking and intensity check (Sect. 3.1.3) as well as the feature descrip-
tion and classification (Sect. 3.1.4). Every set of raw features F,, detected in the
series of images I is processed to obtain a corresponding set of predicted vest fea-
tures F.5 . The set of predicted non-vest features is defined as Fopyest = Fraw \ Frest-
The result of the binary classification into vest and non-vest features is then com-
pared to the ground-truth label manually assigned during preprocessing.

Table 4 shows the results of the evaluation in form of confusion matrices. Sce-
nario 1 contains images acquired indoors where the only IR source was the flash
of the camera system and where no other reflective object than the vest appeared.
Thus, true negative and false positive rates are not defined. The results illustrate the
effect of the feature description and classification described in Sect. 3.1.4. The false
positive rate is decreased by rejecting features of other reflective material than re-
flective vests. By doing so, the classifier also erroneously discards some actual vest
features that look unfamiliar, resulting in an increased false negative rate. Classi-
fication based on the SURF descriptor yielded the best trade-off between the two
effects.

Scenario  Total Detected Features Average Features per Image /;  Vest Detection Rate

1 1612 4.03 97.50%
1540 4.05 97.84%
3 4953 49.53 88.37%

Table 3 Result of the feature detection process
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Table 4 The table shows the confusion matrices of the binary feature classification into vest- and
non-vest features for the case where a) the classification is based only on the feature tracking and
intensity check (Fiesr = Frefiex), b) the feature set Fry is obtained by further classification based
on the BRIEF descriptor and c¢) by further classification based on the SURF descriptor.

Distance and Position Estimation

The trained model of the random forest regressor (Sect. 3.2.1) is used to obtain a
distance estimate for every predicted vest feature in F.y. The distance estimate is
used together with the feature coordinates u = (u,v) and the intrinsic camera model
to obtain a corresponding 3D position estimate according to Sect. 3.2.

Fig. 4 shows the results of the distance estimation. While the estimations based
on the SURF descriptor show a widely stable accuracy over the whole distance
range, the BRIEF descriptor only allows a reliable estimation for short range dis-
tances up to 7m. The plots also report sporadic but large outliers indicating a dis-
tance estimation error of several meters. Even in the most extreme conditions with
direct sunshine into the camera (Scenario 3) the system still gives accurate estimates
up to 6 m distance. Under the influence of strong sunlight, the system fails to detect
features for higher ranges and no distance and position estimations are available.

In the same way as for the distance estimation, we also evaluated the final po-
sition estimation error. The results are not shown here for lack of space. However,
they indicate the same tendency as the results shown in Fig. 4.
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Fig. 4 The box plots show the distance estimation error for the scenarios 1-3. The indications BR

(BRIEF) and SU (SUREF) specify the image descriptor on which the estimation is based. Missing
plots indicate that the vest detection failed and no distance estimation could be performed.
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5 Conclusions and Future Work

In this paper we presented a system capable of detecting people wearing reflective
vests and estimating their position in 3D space. The system has been evaluated in an
indoor warehouse-like environment and outdoors in sunny weather conditions. The
experiments show that the system gives accurate distance estimates for distances up
to 10 m, with only sporadic outliers. Even under the extreme conditions of direct
sunshine into the camera, the system still performs well for distances up to 6 m.

Future work includes the tracking of reflective vests over time using a particle
filter which is continuously updated with the 3D position estimates of single vest
features. Thus, vest detections will be maintained over several frames and the influ-
ence of outliers will be reduced. To allow for simultaneous detection and tracking
of multiple persons, a clustering process will also be introduced.

Future work also includes a systematic evaluation of the system in a range of
different weather conditions including rain, snowfall, and fog. Additional scenarios
will be tested that were not addressed in this paper, such as persons that are partly
occluded or lying on the floor (e.g. fainted persons) as well as different types of
camera movements. An extended version of the camera system will include more
powerful IR LEDs to extend the detection range to 20 m and beyond.
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