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Abstract— We address the problem of human detection from
heavy mobile machinery and robotic equipment operating at
industrial working sites. Exploiting the fact that workers are
typically obliged to wear high-visibility clothing with reflec-
tive markers, we propose a new recognition algorithm that
specifically incorporates the highly discriminative features of
the safety garments in the detection process. Termed Multi-
band Hough Forest, our detector fuses the input from active
near-infrared (NIR) and RGB color vision to learn a human
appearance model that not only allows us to detect and localize
industrial workers, but also to estimate their body orientation.
We further propose an efficient pipeline for automated gener-
ation of training data with high-quality body part annotations
that are used in training to increase detector performance. We
report a thorough experimental evaluation on challenging image
sequences from a real-world production environment, where
persons appear in a variety of upright and non-upright body
positions.

I. INTRODUCTION

In this work we address the problem of human detection

from heavy industrial machinery and autonomous robots

that operate in environments shared with humans. While

recent years have seen steady progress in the development

of pedestrian detectors for cars, their adaption to industrial

scenarios has received limited attention. A direct transfer of

the employed methods has been found difficult, mainly be-

cause pedestrian detectors strongly focus on upright persons.

In an industrial setting however, humans are also frequently

observed in non-upright positions, due to the large variety

of tasks being carried out (cf. Fig. 1). The combination with

the additional challenges of varying illumination conditions,

occlusions, and background clutter, makes human detection

for industrial applications a very difficult task.

To address the specific requirements for industrial human

detection, Mosberger et al. [1] introduced a vision-based

approach that targets industrial environments where human

workforce is required to wear reflective safety clothing

(cf. Fig. 2c). The method relies on the reflective properties

of the safety garments, and detects humans solely by the

appearance of the reflective markers (cf. Fig. 2b and 2d)

in images captured by an active near-infrared (NIR) stereo

camera setup. The method has been shown to yield good

detection rates, while being robust to strongly varying illu-

mination conditions.
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Fig. 1: Output of our multi-band Hough Forest human

detector for a characteristic industrial scene, with detected

reflectors marked red, and green bounding box detections

showing size and aspect ratio estimated in the process.

However, by entirely focusing on the appearance of re-

flective markers, the approach in [1] lacks the ability of

exploiting other features commonly used in vision-based

human detection, such as gradient histograms [2] extracted

from images taken in the visible spectrum. In consequence,

the position and orientation of individual parts of the human

body are not exploited and no attempt is made to estimate a

full bounding box around a detected person. Yet, especially

in an industrial setting, humans do not necessarily appear in

upright position (cf. Fig. 1) and bounding box detections of

correct size and aspect ratio are essential for various tasks,

including safe navigation of autonomous or human-operated

vehicles around human workforce.

We therefore propose a new recognition algorithm based

on the popular Hough Forest framework, which not only

detects industrial workers but also estimates position, size

and aspect ratio of the bounding boxes (cf. Fig. 1). Termed

Multi-band Hough Forest, the algorithm jointly uses multiple

spectral bands by fusing the strongly contrasting natures

of the NIR and RGB input images (cf. Fig. 2b–2d) in a

combined appearance model.

Our article makes the following principal contributions:

i) We introduce our Multi-band Hough Forest detector that

uses the reflective patterns of the safety garments as well

as the human appearance to detect and localize industrial

workers and estimate their bounding boxes. Our proposed

training procedure explicitly uses pixel-wise body part labels

to increase the performance of the obtained detector with

respect to the classical Hough Forest. ii) We propose a

novel, efficient and automated pipeline for creating train-

ing material with high-quality body part annotations. The
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Fig. 2: Input to our multi-band Hough Forest detector for a typical industrial scene: (a) Camera setup with two active NIR

camera units (top and bottom) and a standard color camera (center). (b,d) The images acquired by the two NIR cameras

serve to detect reflective markers, estimate their depth, and generate regions of interest. (c) The same scene captured by the

color camera. Both the NIR and the RGB images are jointly used to create an appearance model of the industrial workers.

pipeline allows us to efficiently learn the human appearance

model from images recorded in a photo studio and apply

it to a challenging real-world scenario. iii) We present a

thorough experimental evaluation on challenging real-world

sequences recorded at an industrial production site with

workers appearing in upright and non-upright positions. We

thereby investigate the design space of the proposed detector

by illustrating the performance improvement due to each

processing step of our method.

II. RELATED WORK

Vision-based pedestrian detection in the context of road

safety has been extensively studied over recent years [3],

[4], [5], and steady progress has lead to the integration of

commercial pedestrian detectors into today’s generation of

cars. By contrast, the problem of detecting humans from

machinery that operates at industrial work sites has not

received the same interest. Even though the task shares many

characteristics, a number of differences between urban traffic

scenes and industrial workplaces make it difficult to directly

apply existing pedestrian detectors in an industrial context.

Specific approaches to vision-based human detection from

industrial machinery include visible-light stereo vision [6],

thermal imagery [7] or the combination of on-board and

stationary camera modules [8].

A particular challenge which is usually not handled well

are persons in non-upright positions. However, in the context

of industrial safety, it is crucial to consider a large variety

of potential body postures, following the number of tasks

carried out by industrial workers. Yet, as existing pedestrian

detectors are highly influenced by the characteristics of urban

traffic scenes, they typically perform well on upright persons

only. Deformable part models [9] have shown to handle

higher degrees of articulation much better, but are com-

putationally expensive. A different approach that considers

the problem from an industrial perspective was proposed in

[1], and is based on active NIR vision. By only observing

patterns created by the reflective markers attached to the

worker’s safety clothing in the NIR image, the method yields

good detection performance, but does not allow to perceive

a person as such. It is therefore difficult to infer additional

information about the body orientation.

To address this issue, we propose a system combining

the robust active NIR approach for reflector detection with

color vision. Our method detects and localizes persons and

additionally estimates the aspect ratio of bounding boxes to

obtain a notion of body orientation. However, training our

detector on a variety of different body positions requires to

collect and label a large amount of training material. We

therefore propose a pipeline that allows to efficiently generate

training material from images acquired in a well-controlled

environment. Image annotations are automatically extracted

and the training images are enhanced using a learned tone-

mapping function. Our detector uses the popular Hough

Forest framework [10]. Hough Forests are object appearance

models based on the Implicit Shape Model (ISM) [11],

where an object class is modeled by a large number of local

prototypic patches of specific appearance and given relative

location from a defined object center.

III. MULTI-BAND HOUGH FOREST DETECTOR

Our approach builds on the method described in [1] for

detection of industrial workers wearing safety clothing with

reflective markers. We propose to extend the camera setup

by integrating a color camera and combine the advantages

of both sensor types. NIR stereo vision (cf. Fig. 2b and

2d) allows us to efficiently detect reflective markers, infer

their distance to the camera, and generate regions of interest

(ROIs). The ROIs are then analyzed to either collect more

evidence for the presence of a person, or, to discard types of

reflectors not belonging to the class of interest (cf. Fig. 9).

To do so, we use the popular Hough Forest framework [10],

and sample dense feature patches from both the NIR and

the color images, each contributing in a generalized Hough

voting procedure to infer bounding box detections with the

correct position, size and aspect ratio.

Hardware Setup. Our camera setup extends the configura-

tion presented in [1], which uses a stereo pair of customized

NIR cameras equipped with a combination of band-pass filter

and flash unit. The purpose of the configuration is to detect

and locate reflective markers and it provides images in which

reflectors appear as characteristic high-intensity regions in

front of the dark, non-reflective background (cf. Fig. 2b, 2d).



Even though a low-resolution color camera was present in

the setup, its images were not used during processing. Our

extended setup features a 1-megapixel color camera fixed in

the center of the sensor unit. All cameras are synchronized

and use the same image resolution. Fig. 2 shows the camera

setup and the images obtained from it.

A. Training

Apart from common features used in human appearance

models, such as gradient histograms [2], we also want our

detector to learn the specific properties of the reflective safety

garments in use. These mainly include the characteristic

color and the appearance of the reflectors as observed in the

color and the NIR images. Furthermore, we do not limit our

model to upright standing people and pay particular attention

on covering a large variety of different body positions,

including standing, sitting, lying, kneeling and crouching.

As our approach targets real-world applications, it is also

a central requirement that our detector can be efficiently

trained and applied to different environments and scenarios.

However, there exists no publicly available dataset featuring

the proposed combination of NIR and color images. As it is

not feasible to collect and label training material from every

potential application environment, we propose an efficient

pipeline that allows us to learn the appearance model from

image sequences recorded in a dedicated environment in the

form of a photo studio. By doing so, we strongly reduce

the annotation effort in the process of preparing the training

images.

Data Collection, Annotation, and Enhancement. With our

camera setup statically placed in a photo studio, we collected

a rich set of foreground training images (cf. Fig. 3a–b)

containing a single person wearing a reflective safety vest. A

colored background allows efficient background subtraction

and extraction of bounding box annotations. We further

define the object center to be the centroid of the reflective

markers on the vest, which has shown to be the more stable

reference point than the bounding box center. Individually

colored clothing further allows to extract a pixel-level seg-

mentation into different body parts. Fig. 3c illustrates the

set of annotations automatically extracted from a positive

training image. A second set of images containing various

background scenes is recorded in different industrial indoor

and outdoor facilities.

Color Mapping. As we want our model to incorporate the

characteristic color of the safety vests, we also compute

features from the color image. To ensure that these features

do not include the characteristics specifically introduced for

the automated extraction process, namely the green back-

ground and the individually colored body parts (cf. Fig. 3b),

we propose to apply a color mapping function to the input

images. The mapping I 7→ I ′ is performed in the HSV

domain and selectively shifts the hue-, saturation and value

components according to,

I ′h,s,v(x) = Ih,s,v(x) + bh,s,v(l(x)) (1)

where l(x) ∈ {l0, l1, ..., lN} are the body part labels at

location x, and bh,s,v(l) are additive correction factors for

the individual labels and HSV channels, learned from a small

validation dataset. As shown in Fig. 3d, the transformation

desaturates the background and clothing parts except the

safety vest and normalizes colors of the clothes to the dark

tones most frequently observed at industrial work sites.

Feature Patch Sampling. Training material for the Hough

Forests consists of a large collection of local fixed-sized

images patches (cf. Fig. 3f). Positive training images are

resized to a reference scale and foreground patches are sam-

pled from random locations within the silhouette of a person.

Negative patches are randomly sampled from the background

images. Every image patch Pi = (Ii, ci,di, Si, bbi) holds

an appearance descriptor Ii, consisting of multiple feature

channels calculated from both the NIR and color images

(cf. Fig. 3e). A binary class label ci ∈ {0, 1} indicates

whether the patch was sampled from a foreground or back-

ground training image. Foreground patches further hold an

offset vector di that stores the location of the patch with

respect to the object center. Finally, the patches hold a local

pixel-wise segmentation mask Si with respect to the body

part labels l, as well as the bounding box bbi of the training

image from which the patch was extracted.

Hough Forest Training. Training our multi-band Hough

Forests follows the supervised procedure proposed by Gall

and Lempitsky [10]. An ensemble of randomized deci-

sion trees is trained in a recursive manner on the set

of foreground and background patches. At each node the

patches are split into two subsets by applying binary tests

that compare the intensity difference of two pixels within

a selected feature channel to a threshold value. A large

number of randomized tests is evaluated at each node, and

the test which minimizes the uncertainty inside the two

subnodes is selected. In [10], two uncertainty measures are

suggested for a given set of patches A: the class label

uncertainty Uclass(A) = |A| · E({ci}) and the offset un-

certainty Uoffset(A) =
∑

i:ci 6=0 (di − d̄)2, where E is the

standard entropy function in terms of the class labels ci,

and d̄ the mean offset vector of the set. While the first

measure separates foreground from background patches, the

second aims at grouping patches sampled from a similar

spatial location with respect to the object center. However,

in cases of increased articulation of the target class, as it

is the case for non-upright body positions, we have found

that minimizing offset uncertainty does not necessarily group

patches extracted from similar body parts. We therefore

propose an additional uncertainty function Usegmentation(A)
defined as the sum of entropies calculated on a per-pixel

level with respect to the annotated body part segments:

Usegmentation(A) = |A|
∑

(x,y)

E
(

{Si(x, y)}
)

. (2)

For each split, one of the three uncertainty measures is

chosen with equal probability. Leaf nodes are created if either

the number of patches in a set is below a threshold or if a
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Fig. 3: Proposed automated training pipeline: (a–b) Raw NIR and color images captured in a photo studio. (c) Automatically

extracted annotations, including bounding box, object centre, and body part labels. (d) Enhanced training image after applying

body part wise tone mapping. (e) Stack of feature channels computed from both the color and the infrared image. (f) Local

foreground training patches Pi sampled from the human silhouette with the according pixel-wise segmentation masks. The

offset vectors (red) indicate the relative location of the patch with respect to the object center.

maximum depth is reached, and each leaf stores references

to the set of patches Pi it contains.

B. Detection

Given a synchronized input image triplet (two NIR and

one RGB image), we aim to detect the center location of

humans wearing a reflective safety vest and to estimate a

bounding box with the correct size and aspect ratio. To do

so, we densely sample feature patches from image regions

surrounding detected reflective markers and apply the learned

appearance model in a generalized Hough voting procedure

Reflector Detection and ROI Generation. Regions showing

reflective markers are extracted from the pair of NIR images.

In favorable circumstances, i.e. in absence of any additional

NIR light source such as the sun, images resemble the exam-

ple shown in Fig. 2b, and extracting reflectors is achieved by

simple thresholding. However, we employ the more robust

approach proposed in [1], in which each NIR image is

compared to a reference image captured in short succession

without flash. We then obtain a characteristic depth of the

centroid of each reflector using stereo triangulation. Finally,

each detected reflector defines a square ROI whose size is

chosen to delimit the image region in which a hypothesized

person is fully enclosed, regardless of the body posture.

Generalized Hough Voting. The image content delimited by

the ROIs is resized to the reference scale used in training,

and a set of feature channels are computed from both the

NIR and color images. Patches are then densely sampled

from the feature channels and are propagated down each

tree of the learned Hough forest model, until a leaf node is

reached. The set of training patches stored in the respective

leaf node of each tree then casts votes for the location

and scale of persons in a generalized Hough voting scheme

as described in [10]. The votes are accumulated in a 3-

dimensional Hough space, represented by a set of stacked

2D Hough images where each layer of the stack corresponds

to a specific scale. The third scale dimension is included

even though the depth of the reflectors is known, which

allows to discriminate persons at different distances that

appear spatially close in the image plane. The Hough space

is subsequently smoothed with a Gaussian adapted to each

scale layer. Non-maximum suppression is applied to extract

object hypotheses, comprising the 2D center location in the

image plane, the characteristic scale and a score. In contrast

to [10], we do not include the bounding box aspect ratio as

a fourth parameter in the Hough space, but instead estimate

it in a second step with the portion of supporting votes of a

given hypothesis.

IV. EXPERIMENTAL EVALUATION

We report a detailed experimental evaluation of our hu-

man detector on image sequences recorded in a real-world

industrial environment, and discuss performance results with

respect to multiple aspects. We adhere to the experimen-

tal protocols proposed by the Caltech pedestrian detection

benchmark [4]. However, we do not apply the normalization

of the bounding box aspect ratio as proposed there, becaue

its estimation is a central task of our approach. Detector

performance is reported in precision-recall curves, obtained

by varying the threshold on the hypothesis score. Detections

are considered matched to an annotation, if the intersection-

over-union (IoU) overlap of the detected and annotated

bounding box is larger than 0.5.
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Fig. 4: Distribution of person annotations in the test se-

quences with respect to the bounding box aspect ratio.



Fig. 5: Examples of successful detector responses with correctly estimated bounding box aspect ratios.

Training. Multi-band Hough Forests consisting of 4 trees

were trained on a total of 70’000 foreground and 30’000

background patches of size 16 × 16 pixels. Every tree is

trained on 50% of the patches only. At each node, 1000

binary tests are evaluated to find the best split. Foreground

patches are sampled from a total of 5000 training images

(cf Fig. 3) while background patches are extracted from a

set of 100 images collected at several industrial work sites,

including the environment in which the detector is evaluated.

To learn the tone-mapping function (cf. Eq. 1) we use a

manually annotated validation set of 30 frames.

Features. Feature channels are computed from the color

image and from one of the pair of NIR images. Features

include raw intensities, absolute values of the first and second

x- and y- derivatives, and 8 HOG-like [2] channels. For the

color image, raw intensities are represented in the Lab color

mode. As in [10], all feature channels are further filtered

by min and max filters with a window of size 5× 5 pixels,

resulting in a total of 56 channels.

Test Data. Evaluation is performed on 4 different test

sequences recorded in a realistic production scenario at an

industrial worksite, with the sensor unit mounted on a forklift

truck. The environment is characterized by a high degree

of background clutter and changing illumination conditions.

All persons wear the same type of safety garment that was

also used during training. A total of 6000 frames with 3500

manual bounding box annotations are evaluated. Fig. 4 shows

the distribution of annotations with respect to the bounding

box aspect ratio. Annotations with an aspect ratio larger than

0.6 are considered non-upright persons.

Fig. 6: Examples of detections with inaccurate estimation of

the bounding box aspect ratio.

Baseline. As baseline serves the purely NIR input based

method from [1]. As this system has no notion of body

position, we fix the aspect ratio of the detected bounding

boxes to 0.4, corresponding to the most frequently observed

upright position in the test data according to Fig. 4. To

illustrate the complexity of the task, we further apply two

state-of-the art pedestrian detectors out-of-the box, namely a

deformable part model (DPM) [9] and an implementation of

the popular HOG detector [12]. Both detectors were trained

on the INRIA Person dataset which does not specifically

contain persons wearing reflective safety vests.

Overall Performance. Fig. 8a shows the performance of

the baseline detectors and our best Multi-band Hough Forest

based detector. For upright persons, the baseline approach [1]

yields 86% of precision and recall at the equal error rate

(EER), purely by observing the reflective patterns on the

safety vests. However, due to the fixed upright bounding

boxes it is bound to fail for non-upright persons. Our Multi-

band Hough Forest detector increases the overall perfor-

mance at the EER from 58% to 74%, but the additional

estimation of the aspect ratio results in a slight performance

reduction on upright persons (86% to 83%). The curves

further illustrate that the HOG detector does not cope well

with the different appearance of the persons between the

INRIA Person dataset and the industrial scenario.

Hough forest training. Fig. 8b depicts detector performance

for different combinations of supervision criteria in the

Hough forest training procedure. Class and offset supervi-

sion corresponds to the combination suggested by Gall and

Lempitsky [10]. As can be seen, the addition of our proposed

Fig. 7: Examples of missed detections due to weak detector

response after occlusion of the reflective stripes.
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Fig. 8: Quantitative detector performance in precision versus recall. Solid lines show overall performance, dashed lines

performance on upright, and dotted lines on non-upright persons. (a) Performance of the baseline approach [1], two state-

of-the-art pedestrian detectors (DPM [9] and HOG [12]), and the best detector obtained using our approach. (b) Influence

of the different supervision criteria in the Hough forest training procedure. (c) Influence of the training set enhancement (d)

Relative contribution of the color and NIR image (e) Detector performance for different overlap criteria. (f) Distance and

occlusion statistics.



Fig. 9: Examples of reflective objects that generate regions

of interest but yield weak detector response, and therefore

are correctly eliminated in the process.

segmentation uncertainty criterion based on the annotated

body part segments consistently improves performance.

Training Set Enhancement. Fig. 8c shows that best per-

formance is obtained if the characteristic yellow color of

the safety vest can be learned from the Lab channels of

the color image and incorporated in the appearance model.

However, to successfully achieve this, the proposed tone-

mapping (Sec. III-A) has to be carried out before training.

Appearance Information. Fig. 8d shows the performance of

detectors that use subsets of all available feature channels.

Features computed from the NIR image are shown to con-

tain most of the discriminative information for successful

detection. Using the RGB image only shows comparably

weak performance. This can be explained by the fact that

the latter is much more affected by background clutter and

illumination changes. It is further shown that our proposed

fusion of features from the NIR and color images yields

the best performance and outperforms pure NIR vision,

especially in detecting non-upright persons.

Upright versus non-upright poses. The results show a dis-

crepancy between performance on upright and non-upright

persons. This is explained by the larger variability of possible

articulations in non-upright positions, which makes the detec-

tion task much more challenging. However, Fig. 8e illustrates

that by setting the overlap threshold to a less restrictive value

(0.3), a much higher detection score is reached also for non-

upright persons. This shows that localizing persons actually

works well, only the estimation of the bounding box aspect

ratio is more difficult in the non-upright case.

Distance and Occlusion. Fig. 8f indicates a significant

performance drop for far-scale with respect to near-scale

occurences, which is due to the decreasing spatial image

resolution. The curves further show that our approach has a

high sensitivity to occlusion. This is due to the fact that the

method needs reflectors to be visible to the camera to initiate

the detection process. However, the effect of the problem can

be limited by using garments with more reflectors.

Qualitative Results. Fig. 5 shows various successful detector

responses for challenging situations, while several examples

of missed detections are illustrated in Fig. 7. Fig. 6 de-

picts examples where the object center has been correctly

identified, but the bounding box aspect ratio was poorly

estimated. Finally, Fig. 9 lists examples of other reflective

objects present in the test area. Such secondary reflectors also

generate regions of interest, but then typically yield weak

detector response and are therefore filtered out.

V. CONCLUSION

We presented an approach for detecting human workforce

wearing reflective safety clothing from industrial machinery.

By combining NIR and RGB color vision, our approach

clearly outperforms a previous method based on NIR input

only [1]. The proposed fusion of two spectral bands in a

Multi-band Hough Forest, allows us to learn an appearance

model that comprises both the properties of the safety

garments in terms of reflectivity and color, as well as the

typical human appearance. The obtained detector deals with a

variety of body postures which is important for safety-critical

industrial applications. We further illustrated the importance

of our work by showing that a direct application of existing

human detectors ([9], [12]) to our industrial dataset does not

lead to a satisfying performance.

We further proposed a procedure to efficiently generate

high-quality training data with automatically annotated body

part labels and we showed that the inclusion of those body

part labels into the training of Hough Forests significantly

increases detection performance. This automated pipeline is

an important aspect for practical applicability in industrial

scenarios since it considerably reduces the training effort.

Future work includes using the proposed detection pipeline

within a tracking framework, and inferring further body pose

information from the specific IR and RGB sensor data.
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