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Abstract: This article presents a novel approach for vision-based detection and tracking of
humans wearing high-visibility clothing with retro-reflective markers. Addressing industrial
applications where heavy vehicles operate in the vicinity of humans, we deploy a customized
stereo camera setup with active illumination that allows for efficient detection of the
reflective patterns created by the worker’s safety garments. After segmenting reflective
objects from the image background, the interest regions are described with local image
feature descriptors and classified in order to discriminate safety garments from other
reflective objects in the scene. In a final step, the trajectories of the detected humans
are estimated in 3D space relative to the camera. We evaluate our tracking system in
two industrial real-world work environments on several challenging video sequences. The
experimental results indicate accurate tracking performance and good robustness towards
partial occlusions, body pose variation, and a wide range of different illumination conditions.
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1. Introduction

Many of today’s industrial work environments are organized as shared work spaces in which vehicles
and machinery operate in close proximity to human workforce. The absence of safe separate work
zones exposes the workers to a number of risks, namely accidents, injuries and fatalities due to contact
collisions with moving vehicles. With the aim of increasing the safety for operators and co-workers
and preventing work-related accidents, the industry has shown an increasing interest in on-board safety
technology that is able to automatically detect, locate and track workers in a specific hazardous zone
around the host vehicle. Situational awareness about the presence and exact location of humans with
respect to the machine is crucial for different reasons. On the one hand, it plays an important role in
the development of driver assistance technology for human operated machinery. On the other hand, it
is even a fundamental prerequisite for safe navigation, path planning and collision avoidance for either
semi-autonomous or fully autonomous robots operating in the vicinity of humans.

However, reliably detecting and tracking humans in an industrial environment is complex and
challenging. Many industrial work sites are cluttered spaces in which humans are often partially
occluded. The environment is often highly dynamic, with the humans to be tracked, the machines and
possibly other objects and materials in motion. Industrial machines also operate often in both indoor
and outdoor environments and are confronted with a wide range of different weather and illumination
conditions. Especially in outdoor applications, vehicles also frequently face rough terrain, entailing
further camera motion and therefore presenting additional tracking challenges. Workers to be detected
appear at various distances and angles and the non-rigid, articulated nature of the human body leads to a
considerable intra-class variation.

While similar requirements in the field of road traffic safety have led to the development of advanced
pedestrian protection systems, their adaption from the use in cars to the use in industrial machines
has so far attracted much less attention. Approaches to reliable detection of industrial workers have
been based on various sensor modalities, including visible-light and infrared imaging, time-of-flight
sensors such as RADAR and LIDAR as well as radio frequency technologies including Radio Frequency
Identification (RFID), Ultra Wideband (UWB) and the Global Positioning Systems (GPS). However,
within the context of industrial safety, every technology suffers from certain limitations in terms of
either reliability, availability or applicability in operational conditions.

Our work therefore focuses on the task of real-time on-board human tracking from construction
and transportation machinery that operates in industrial environments such as manufacturing areas,
construction sites, warehouses, or storage yards. We thereby exploit the fact that high-visibility clothing
has become widely accepted throughout industry as an effective way to protect industrial workers that are
exposed to heavy vehicles and equipment. The most frequent types of such protective safety garments
used in industry are vests and jackets in fluorescent color, with parts of their surface covered with
retro-reflective strips (see Figure 1). The reflectors on the safety clothing considerably increase the
worker’s visibility for an observer located near a light source. Based on this principle, we present a
novel vision-based human tracking approach whose core idea consists in tracking industrial workers
purely by detecting the retro-reflective markers attached to their safety clothing. Our approach is based
on the input of a specifically designed monochrome stereo camera setup with active IR illumination
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that, at the basis, allows the system to detect, locate, track and classify any dynamic object with highly
retro-reflective properties. We focus on the task of human detection by learning the reflective appearance
model of safety garments in supervised manner. No assumptions on the human body posture are made,
as we specifically aim to detect workers carrying out arbitrary actions. In addition, we don’t assume
the presence of a flat ground-plane in order to keep our method applicable for any application on rough
outdoor terrain.

Figure 1. The two types of reflective safety garments used throughout the experiments:
ANSI/ISEA safety class 2 vest with reflectors only in the body area (right) and safety class 3
jacket with additional reflectors in the shoulder and arm area (left).

We first introduced our principal approach of detecting the reflectors of safety vests using a monocular
camera setup, equipped with a flash unit [1]. It was shown that by acquiring pairs of images, one
using flash and one without, reflective material can be identified by considering the intensity difference
between corresponding image regions of the acquired image pair. The method was then extended to
illustrate that by using supervised learning of state-of-the-art image feature descriptors extracted from
the reflective interest regions, we are able to infer two useful quantities [2]. First, a classifier was trained
to assign a class label to the detected reflective patterns, in order to discriminate between reflectors of a
reflective garment and other types of reflectors. Second, the metric distance between the camera and a
reflector was estimated with an accuracy of less than one meter using supervised regression. The output
of the classifier and regressor were then combined to perform real-time tracking of a single person using
a particle filter [3]. The method was further extended in order to address the more challenging task of
simultaneously tracking multiple humans and the monocular camera was replaced by a stereo setup [4].

This article makes the following novel contributions. (1) We review, summarize and consolidate the
research on our industrial human tracking system while offering a more exhaustive discussion of the
individual parts of the system; (2) We present an extended evaluation of the system and its constituent
parts using challenging real-world data from two different industrial environments; (3) We provide a
discussion of the experimental results and highlight the advantages and limitations of our method in
comparison with other vision-based human tracking approaches.

The remainder of the article is structured as follows. In Section 2 we review related work in the
domain of human detection and tracking in an industrial context. Section 3 then discusses both the
physical camera setup as well as the individual processing steps of the algorithm that build our industrial
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human tracking system. In Section 4 we show experimental results on a set of challenging video
sequences acquired in different real-world industrial environments while a discussion of the results is
presented in Section 5. Finally, Section 6 summarizes the paper and gives an outlook on future work.

2. Related Work

Our work is closely related to the field of pedestrian detection and tracking for road safety. With
the aim of protecting pedestrians, today’s cars are increasingly equipped with safety technology in the
form of pedestrian protection systems (PPSs). The aim of a PPS is to detect humans in a specific area of
interest around the host vehicle and mitigate dangerous situations by either providing the driver with alert
signals or automatically taking counteractive measures, such as breaking the vehicle. A comprehensive
overview of the vast literature about sensors and algorithms used in pedestrian protection systems is out
of the scope of this article, and we refer the reader to the recent surveys by [5–9]. Here, we confine the
review of PPSs to the most important points related to our work on industrial human detection.

The major part of approaches towards on-board pedestrian detection and tracking for the use in a PPS
rely on the input of cameras that operate either in the visible, near infrared (NIR) or thermal infrared
(TIR) domain. In addition, approaches that combine vision-based methods with alternative sensor
modalities including LIDAR and RADAR have been investigated. For analyzing the different algorithms
in use, the architecture of a PPS can be separated into several key modules that appear in different
configuration in the majority of the existing systems. The modules that are most related to our work are
foreground segmentation, object classification and tracking. Foreground segmentation aims at extracting
regions of interest from the raw input data. Vision-based approaches often exploit various cues such as
color or intensity, texture, stereo [10], or optical flow [11]. Other algorithms use no explicit segmentation
and perform exhaustive scanning over the entire image, such as the popular HOG detector [12]. Popular
object classification methods used in PPSs include template-based silhouette-matching [10]), body part
models [13], or classification of appearance based feature descriptors such as HOG [12]. Tracking
modules operate either in the 2D image space or in 3D camera coordinates and frequently make use of
Mean Shift Tracking [14], Extended Kalman Filters [15] or particle filters [16].

In contrast to the field of road traffic, robust human detection from vehicles operating in industrial
environments has so far attracted less attention in research. Although the principal objective of providing
robust on-board human detection is the same, there exist numerous differences between the two fields
that make the direct industrial application of existing PPSs difficult. Most importantly, the operational
conditions that industrial vehicles typically face are more challenging. They often operate alternately in
bright outdoor and poorly illuminated indoor areas, which leads to a broad range of different illumination
conditions, a fact that hampers the adoption of purely visible-light vision based detectors that rely on
good image contrast or texture. Especially in outdoor applications, they are also often faced with rough
terrain. In consequence, the flat floor assumption is often not valid and detections cannot be restricted
to certain image regions by introducing ground plane constraints. When working with thermal vision
sensors, the presence of various heat sources in an industrial work site makes the extraction of foreground
regions more difficult than in road traffic. Further challenges also include the large variety in human body
pose that is encountered in an industrial work place. Instead of observing mainly upright pedestrians
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as is the case in road traffic, industrial workers can appear in a number of different body positions
depending on the activity that is performed. Furthermore, the typical motion scenarios of industrial
vehicles comprise more acceleration and deceleration, sharper turns and reversing, resulting in dangerous
front, rear and lateral zones. Consequently, the desired sensor coverage for human detection is bigger
than the relatively narrow cone observed in front of a regular car.

Considering the above challenges, various attempts have been made to addressed the problem of
human detection and tracking in an industrial context. Color vision in combination with various tracking
algorithms was successfully used to track and monitor construction workers from both static and dynamic
cameras [17]. A pedestrian detection system specifically designed for underground mining vehicles [18]
proposes the use of thermal images for detection and a 3D range data for depth estimation. Thermal
vision is used in this case because of its insensitivity to illumination changes and to the frequent
obscuring dust in underground mining. Another vision based human detector using a stereo camera
was designed for heavy industrial machinery [19]. The authors claim that traditional single detector
based approaches are insufficient for the operation in challenging work environments. To overcome
the problem, they provide a modular framework that allows them to combine responses from different
human detectors in order to increase the system robustness. Radio-frequency identification (RFID) is
another popular method for robust proximity warning systems and has been employed to detect humans
in the neighborhood of heavy construction machinery [20]. While the approach proves to be effective,
workers have to be equipped with costly sensing infrastructure. The specific approach of using the
properties of high-visibility clothing in order to facilitate the detection of industrial workers has also
been previously investigated [21]. Their algorithm identifies the fluorescent color of safety vests by
processing local color histograms extracted from the regions of interest. Even though the reflectivity of
the vests is not exploited, the authors show that the distinctive color of safety clothing contributes to a
more effective detection.

3. System Description

Figure 2 gives a schematic overview of our proposed vision-based human tracking system. Our core
idea is to track industrial workers by detecting the retro-reflective stripes attached to the high-visibility
clothing widely used throughout industry. For this purpose, we use a customized monochrome stereo
camera setup (cf. Figure 3) that is designed to acquire images in which reflectors appear as distinctive
high-intensity regions in front of the non-reflective scene background (cf. Figure 4b). While a continuous
video stream is acquired by the stereo camera, an infrared flash is used alternately for every second image
capture. Two consecutively acquired images of each camera are grouped together to form flash/non-flash
image pairs and the two obtained pairs then build a group of four images that are processed together by
the algorithm. Before entering the processing chain, the four images are unwrapped in order to obtain
undistorted images that cover the meaningful, often panoramic field of view around the host vehicle.
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Figure 2. Schematic overview of the different stages of our human tracking system.

Disparity Computation

Image Acquisition

Blob Detection

Blob Description

Vest Classi�cation

Blob-Object Association

Object
Initialization

Object
Update

Object
Removal

Object States st

Panoramic Image Pairs I = (If  , Inf )

Raw Image Pairs I‘ = (I‘f , I‘nf )

3D Projection

Classi�er Scores s

Panoramic Unwrapping

Re�ectivity Check

Raw Images

Raw Blobs Braw

[ 0 1 0 0 1 1 1 ... ]

...

...

...

[ 1 1 0 0 1 0 1 ... ]

[ 1 0 0 0 1 0 0 ... ]

[ 0 0 1 1 0 1 0 ... ]

Th
re

sh
ol

di
ng

Re
�e

ct
iv

ity
 C

he
ck

Final Segmentation

Unwrapped Images

I‘ f
2

t

I‘ nf
2 I‘ f

2 I‘ nf
2

CA
M

 2

I‘ f
1

t

I‘ nf
1 I‘ f

1 I‘ nf
1

CA
M

 1
M

or
ph

ol
og

ic
al

 D
ila

tio
n

Fo
re

gr
ou

nd
  P

at
ch

 E
xt

ra
ct

io
n

Bl
ob

-t
o-

O
bj

ec
t A

ss
ig

nm
en

t

Pa
tc

h 
D

es
cr

ip
tio

n

Cl
as

si
�c

at
io

n

Lo
ca

l S
te

re
o 

M
at

ch
in

g

D
is

pa
rit

y 
Ex

tr
ac

tio
n

an
d 

Tr
ia

ng
ul

at
io

n

Co
nt

ou
r E

xt
ra

ct
io

n

Pa
no

ra
m

ic
 U

nw
ra

pp
in

g

If

If

If

Is

Is

Inf

If

Inf

If
2

Is

Id
Id

Score s1

Score s2

Score s3

Score sN

Is

Se
gm

en
ta
ti
on

A
cq

ui
si
ti
on

Lo
ca
liz

at
io
n

Cl
as
si
�c

at
io
n

Tr
ac
ki
ng

I‘nf
2

I‘f
2

I‘nf
1

I‘f
1

Inf
1

If
1

Inf
2

If
2

Re�ective Blobs Bre�ex

Non-re�ective Blobs

Id

3D Space

Camera Center

Blob-Object Associations B[i]      O[j]

Position Estimates     p

Feature Descriptors

Disparity Image     Id 

Re�ective Blobs      B
reflex

Raw Blobs      B
raw

ta

Ta

B[1]

B[2]

B[3]

B[4]

B[5]

B[6]

B[7]

Blob

Is

B[1]

B[2]

B[3]

B[5]

B[6]

B[7]

B[4]

O[1]

O[1]

O[2]

O[2]

O[2]

-
-

Object

O[2]O[1]

If

O[2]O[1]

O[3]

If

Update Object O[1]

Initialize Object O[3]

Update Object O[2] Object 
States st

p1

p2 p3

p4
p5

p6



Sensors 2014, 14 17958

Figure 3. Sensor setup used throughout our experiments: Near-infrared sensitive camera
equipped with wide-angle lens, bandbass filter, and 16 high-power IR LEDs (left) and stereo
camera unit formed by two identical camera units (right). The additional color camera
in the center of the stereo rig is not used by the tracking algorithm but serves purely for
visualization purposes.

Figure 4. Examples of unwrapped input images as captured by (a) a color camera; (b) the
NIR camera using flash; and (c) the NIR camera without using flash. The top row shows
images taken in an indoor environment and in the absence of any secondary NIR light
source, resulting in a completely dark image background. The bottom row illustrates images
captured outdoors under strong backlight conditions, leading to much higher background
illumination. Our algorithm exploits the fact that reflective objects appear significantly
brighter in the image taken with flash while background illumination is constant over
both images.

(a) (b) (c)

The set of reflective foreground regions is then further processed to estimate two important quantities.
In a localization module, the 3D position relative to the camera is estimated individually for every
reflective foreground blob. To do so, we make use of the stereo input and compute a dense disparity
map in a local neighborhood around each foreground blob. After extracting a single aggregated disparity
value per blob, we infer the metric distance to a reflector as well as the 3D position using triangulation.
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In an initial segmentation stage, we detect reflective material by extracting image regions showing
a clear intensity difference between the two images of a flash/non-flash pair. We thereby exploit the
fact that reflectors appear significantly brighter in an image captured with flash, following the strong
back reflection. Using this effect, segmentation is performed in two steps. First, we extract a set
of high-intensity blobs from the image captured with flash by performing local adaptive thresholding.
We then submit each of the blobs to a reflectivity check that rejects candidates for which the intensity
difference between the two images of a pair is low. However, to calculate the intensity difference, we
first need to relate corresponding image regions between the flash and non-flash image. This is necessary
because a time delay exists between the acquisition of the two images, and the camera or the observed
objects might be in motion.

In a parallel classification module, we further assign a class membership to every blob. When
operating in a typical industrial environment, it is likely that various reflective objects other than the
worker’s safety vests are also captured by the camera. Classification of the observed reflective patterns is
therefore necessary in order to discriminate reflectors on a safety garment from arbitrary other reflective
objects. To obtain a robust blob description, local image feature descriptors are first extracted from the
neighborhood of each reflective foreground blob. A classification score is then obtained using a classifier
that was previously trained in supervised manner.

In the final tracking stage, we then attempt to assign the detected reflective blobs to a set of tracked
objects. Every tracked object maintains a filtered estimate of each object’s 3D position and speed relative
to the camera using a particle filter that is fed with the individual blob-level 3D position estimates. We
thereby specifically track all reflective objects regardless of their nature. A final estimate whether or
not a human wearing a reflective safety garment is observed is inferred by aggregating the individual
classification scores of all blobs assigned to a given object.

3.1. Hardware and Camera Model

Our camera setup is specifically designed for the task of detecting retro-reflective material. With the
combination of a monochrome camera, optical filter, and active illumination we pursue the objective of
separating the appearance of reflective and non-reflective material already to a great extent at the moment
when the images are acquired. This allows us to significantly reduce the complexity of the subsequent
segmentation techniques applied to extract the image regions corresponding to reflective objects.

With the configuration of our camera setup we pursue two primary goals concerning the characteristics

of the images that are acquired. First, we want retro-reflective material to appear as distinctive, saturated
high-intensity image regions by equipping the camera with a flash unit. The intensity of the flash and
camera exposure time are chosen such that retro-reflectors appear fully saturated in the image. Second,
we aim to reduce the illumination of the non-reflective image background to the extent possible. This is
achieved by including a narrow optical bandpass filter that removes all wavelengths other than the ones
corresponding to the emitted flash. We thereby choose to operate the camera setup in the near-infrared
(NIR) range in order to make the active illumination unobtrusive.
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The particular setup used throughout our experiments (cf. Figure 3 left) consists of an 1-megapixel
off-the-shelf monochrome CMOS sensor (IDS Imaging GigE UI-5240CP-NIR) with high NIR
sensitivity. A wide-angle lens with a field-of-view of 120◦ is chosen to cover the desired region of
interest around the host vehicle. 16 highpower (1.8 W) infrared LEDs with a centroid wavelength of
940 nm and a fullwidth at half maximum (FWHM) of 35 nm are placed close to the lens. The spatial
arrangement and orientation of the LEDs provide a relatively uniform illumination over the entire FOV
of the camera. Finally, a bandpass filter with a centroid wavelength of 940 nm and a FWHM of 10 nm is
mounted between the lens and the sensor. The spectral sensitivity, emission and transmission curves for
the sensor, the LEDs and the filter are depicted in Figure 5. The choice of operating with wavelengths
around 940 nm is motivated by a strong negative peak in the sun spectrum at this point, caused by
atmospheric gas absorption. This allows us to reduce the disturbing effect of background illumination
observed when the camera is exposed to the sun.

Figure 5. The figure shows the relative spectral characteristics of the camera, the bandpass
filter and the flash diodes. The red curve represents the solar irradiation spectrum at sea
level. The operation wavelength of 940 nm is chosen to exploit the negative peak in the
sun spectrum. Especially in outdoor applications, this allows us to considerably reduce the
undesired background illumination.
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Using two identical camera units, we then build a stereo setup with a base line of 200 mm (cf. Figure 3
right). The stereo rig is further equipped with a color camera that is used purely for visualization
purposes. The vertical arrangement of the two cameras accounts for the panoramic unwrapping process
described in the next section and preserves the existence of straight epipolar lines.

In order to provide full flexibility to work with different lens types, including wide-angle, fish-eye
and omni-directional, we propose to adopt an omnidirectional camera model [22]. The adopted model
defines an image projection function g, describing the relation between a 2D image coordinate pair
u′ = [u′, v′]>, the metric coordinates u′′ = [u′′, v′′]> on the sensor plane, and a unit length 3D vector
emanating from the camera’s optical center O to the according scene point in 3D space,
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g(Au′ + t) = g(u′′) = (u′′, v′′, f(u′′, v′′))
> (1)

with f a polynomial function, rotationally symmetric with respect to the sensor axis. The affine
transformation Au′ + t accounts for the digitizing process as well as small axes misalignments.

3.2. Image Acquisition and Panoramic Unwrapping

A synchronized image stream is acquired from the stereo camera where images are captured
alternately with and without using flash. Two successively acquired images are grouped together and
form a flash/non-flash input image pair. The time increment ta between the capture of the two images
of a pair is kept as short as possible in order to minimize the difference between the two images due
to both changes in viewpoint under camera motion and changes in the observed scene. The pairs of
raw flash/non-flash images of both cameras, denoted I ′1 = (I ′1f , I

′1
nf ) and I ′2 = (I ′2f , I

′2
nf ) for the

first and second camera of the stereo unit respectively, represent the sole input to the detection and
tracking algorithm.

It is important to note that, in the absence of any secondary NIR light source, it would be sufficient
to acquire single images with flash instead of flash/non-flash image pairs. As illustrated in Figure 4
(top row), the image taken under active illumination shows bright reflectors in front of an entirely dark
background. In this ideal case, image segmentation would be achieved by simple thresholding. However,
this approach fails if the scene background is subject to external NIR illumination as it happens for
example under exposure to strong sunlight. Figure 4 (bottom row) illustrates that, in this case, reflective
material no longer represents the only bright image regions. Therefore, the image taken without active
illumination serves as a reference image for the background illumination.

After acquisition, the raw images I ′f and I ′nf are unwrapped to create a pair of undistorted panoramic
images I = (If , Inf ), containing the desired area of interest. Figure 6 illustrates the virtual cylinder with
unit radius defining the panoramic field of view. The relationship between a pair of panoramic image
coordinates u = [u, v]> and a unit length vector pointing to the according point in 3D space is defined
by the image projection function h,

h(u) =

 cos φ sin θ

− sin φ
cos φ cos θ

 (2)

with the azimuth angle θ and the altitude angle φ defined by

θ = β

(
u

W − 1
− 1

2

)
and φ = tan−1

[
tan

α

2

(
1− 2v

H − 1

)]
(3)

while the panorama image width W and height H are related through H = 2 tan(α
2
)β−1 W .
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Figure 6. Parametrization of the virtual cylinder used to define the panoramic field of view
for unwrapping of the raw images. The reference (x, y, z) indicates the orientation of the
coordinate system attached to the camera.
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3.3. Blob Detection and Reflectivity Check

In a first stage, we perform a segmentation of the input images with the objective of identifying
retro-reflectors in the image and extract the contours around them. Our approach is based on three major
observations made from inspecting typical input images as depicted in Figure 4.

1. The retro-reflective stripes we aim to detect appear significantly brighter in image If when
compared to Inf , due to the strong back reflection of the emitted flash.

2. Other bright objects in the images, such as the sun, or surfaces that are illuminated by the sun or
another secondary IR light source, have similar intensity values across the images If and Inf .

3. As a time difference ta exists between the acquisition of If and Inf , the exact location of an object
is not necessarily the same in both images. This applies if either the observed object in the scene
or the camera itself are in motion.

The first two observations indicate that to detect reflective material in an input image pair, we need
to identify image regions with considerably higher intensity values in If than in Inf . However, due to
the third point, a direct subtraction of image Inf from If is not an adequate way to detect such regions.
Instead, we proceed by first applying local adaptive thresholding to image If , leading to a binary image
Is containing a set of high-intensity foreground regions. The adaptive threshold is computed as the
mean intensity value in a square local neighborhood of size wth × wth subtracted by an offset cth > 0.
A suitable choice of the parameters cth and wth assures that the segmented foreground regions always
include the reflectors to be detected. Using contour following according to [23] applied to image Is, we
then extract a set of raw blobs Braw in which each blob b is characterized by its respective contour Λ and
the center uc = [uc, vc] of the contour’s bounding rectangle:
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Braw =
{
b[i] =

〈
Λ[i],u[i]

c

〉
| i = 1, ..., Nraw

}
(4)

The detected blobs in set Braw are then submit to a reflectivity check. The test verifies whether the
intensity values in the surrounding area of a blob are similar in the images If and Inf , or if they are
instead distinctly higher in image If . The first case is an indication that the blob corresponds to an object
that appears bright due to background illumination by a secondary IR light source. Blobs that match
this criterion are rejected. In contrast, the second case indicates that the corresponding object has highly
reflective properties and therefore the blob is retained.

The test is performed by first computing the bounding rectangle around the contours of all raw blobs
b ∈ Braw extracted from image If . We then apply the pyramidal implementation of the optical flow based
iterative Lucas-Kanade (LK) feature tracking method [24] to determine the position in image Inf that
corresponds to the region delimited by the bounding box in the image If . Especially under fast rotational
camera movements, this positional offset can amount to several pixels, due to the time delay ta in the
acquisition of If and Inf .

The LK tracker is based on the assumption that the brightness of an object is constant over two
consecutive frames. In the case of non-reflective objects where the appearance in If and Inf is very
similar, this assumption holds true. The LK tracker typically finds the corresponding location in image
Inf after a small number of iterations. In this case, we compute the local average intensity difference
∆I = If − Inf within the bounding rectangle, taking into account the rectangle’s respective location in
If and Inf . A low intensity difference ∆I is then a confirmation that the appearance of the blob in If
and Inf is similar, and a strong indication that the concerned blob represents a non-reflective object. In
the contrasting case of a reflector, the assumption of constant brightness over If and Inf is obviously
violated, because intensity values are clearly higher in If . Here, the tracker is most often unable to find
any suitable match in the image Inf .

Based on the above observations, we use the output of the LK tracker and the intensity difference
check to split the initial set of blobs Braw into two subsets Breflex and Bnon-reflex according to

Bnon-reflex = {B ∈ Braw | B tracked ∧ ∆I < λ∆} (5)

Breflex = Braw \ Bnon-reflex (6)

where Breflex is assumed to contain only features originating from reflective material. Here, it is worth
noting that in contrast to the standard application of a feature tracker, we are not only interested in
features that can be successfully tracked from one image to the other. Instead, we specifically identify
features for which LK tracking fails and assume that the reason for the failure is the different appearance
of the feature over both images. Figure 7 illustrates the described image segmentation procedure in the
case of strong backlight conditions.
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Figure 7. Illustration of the segmentation process for an input image pair acquired in the
challenging case of strong backlight conditions. (a) Observed scene as captured by a color
camera; (b) NIR image If captured with flash; (c) NIR image Inf captured without flash.
(d) Image Is obtained after applying adaptive thresholding to image If ; (e) Bounding boxes
(yellow) around the segmented high-intensity regions. Optical flow based Lucas-Kanade
tracking is applied to determine the position of the indicated regions in image Inf . A
reflectivity check then assesses whether a clear intensity difference exists between the two
images; (f) Fully segmented image, with reflective parts marked in green and non-reflective
parts in red.

(a) (b) (c)

(d) (e) (f)

3.4. Local Disparity Computation and 3D Projection

The goal at this stage is to estimate the 3D position of all detected reflective objects represented
by the set of foreground blobs Breflex. We therefore make use of the stereo image pair (I1

f , I
2
f ) and

perform dense stereo matching before extracting one single aggregated disparity value per blob. We
thereby limit disparity computation to a close neighborhood around the image area covered by the blobs
B ∈ Breflex. This considerably reduces the computational effort compared to dense stereo matching over
the entire image.

The procedure is illustrated in Figure 8 and departs from the segmented foreground image Is from
which we have removed all non-reflective blobs. In a first step we apply morphological dilation in order
to merge neighboring blobs and create clusters of foreground blobs. From the resulting binary image
we extract the bounding rectangles around the extended and possibly merged foreground components.
Dense stereo correspondences are then computed within the areas covered by the rectangles using the
semi-global block matching algorithm [25]. Due to the lack of sufficient texture in the image pair
(I1
f , I

2
f ), disparities are often not unambiguously computed for the entire area within the bounding box.
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In addition, mismatched pixels lead to erroneous disparity values, an effect that applies especially for
the saturated white regions within a blob. However, due to the clear-cut edge between the bright surface
within a blob and the dark surrounding, stereo matching is consistently and accurately achieved in the
regions surrounding the contour Λ of a blob. We therefore consider all disparity values computed at
pixels with a distance smaller than s from the blob’s contour Λ and use the median value as an aggregated
disparity estimate for a blob.

Figure 8. Disparity computation for a set of foreground blobs: (a) Observed scene as
captured by a color camera; (b) Segmented foreground image Is; (c) Connected foreground
clusters obtained after morphological dilation. The bounding rectangles (yellow) indicate
the area in which dense stereo matching is performed. The original contours of the blobs
are drawn in green; (d) The final disparity image. The blue zone around the blob contour
indicates the area in which disparity values are aggregated to obtain an overall disparity
estimate per blob. Black areas within the bounding rectangles indicate regions where the
matching fails, due to weak texture. Deviating gray levels inside the blob region indicate
erroneously estimated disparities due to mismatched pixels.

(a) (b) (c) (d)

We then use the assigned median disparity to triangulate the metric distance d to the object represented
by a foreground blob. Using the projection function h(u) of our virtual cylindrical camera model applied
to create the panoramic images (Equations (2) and (3)), we further obtain a 3D position estimate p̂:

p̂ = d× h(u) =
b× f

D cos(φ)
× h(uc) (7)

where f = 1 is the focal length of our virtual cylinder, b the baseline of the stereo camera, and D the
disparity expressed in metric units on the virtual cylindric image plane.

3.5. Blob Description and Classification

The output of the previous processing steps is a set of blobs Breflex that we assume to originate from
reflective objects in the observed scene. While our goal is to detect the reflectors of a worker’s safety
garment, other reflective items are also frequently encountered in an industrial environment. Typical
examples are cat’s eye reflectors on vehicles, metallic surfaces, windows, mirrors, and various types
of reflective signs attached to walls, floors, or materials. To specifically detect workers wearing a
reflective safety vest and prevent false alarms in case of any other reflective object, it is important to
discriminate between the two cases, and we therefore introduce a binary classification step. Classification
is performed individually for every reflective foreground blob B ∈ Breflex. Instead of determining a
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simple class membership, we opt to produce a continuous class score ĉ. Classification is then achieved
by thresholding according to the score.

To perform the classification, we first extract an image feature descriptor from each blob’s local
neighborhood. On one hand, the extraction of a descriptor serves to considerably reduce the dimensionality

of the subsequent classification problem. On the other hand, we attempt to obtain a blob description
that is robust towards image noise and illumination changes. As we have observed earlier [2,3],
popular image feature descriptors based on local intensity differences such as SURF [26], BRIEF [27],
BRISK [28] or FREAK [29] comply well with our specific requirements and provide good discriminative
power to predict the class to which a reflector belongs. The blob descriptors are extracted from an area
around the blob’s center position uc, while the size of the area is chosen to cover the visual content inside
a blob’s bounding rectangle.

The classifier models are obtained using supervised learning, where the training data contains both
reflectors of different reflective safety clothing as well as a large set of other reflectors captured in various
industrial environments. Both a Support Vector Machine [30] and a Random Forest [31] classifier have
been employed to perform the classification. The computation of the classification score ĉ is dependent
on the type of classifier in use. In the case of a Random Forest, the score is calculated as the proportion of
decision trees in the forest that classified as sample belonging to a reflective safety garment. In the case
of a Support Vector Machine, the signed distance between the sample to be classified and the separating
hyperplane is used as the score.

3.6. Data Association and Tracking

We again point out that our tracking approach solely relies on observing the reflectors of reflective
safety clothing. Most standardized safety garments available on the market feature a pattern of multiple
reflectors (cf. Figure 1). In consequence, multiple reflective foreground blobs are typically detected for
a single observed person while performing image segmentation as described in Section 3.3. In addition,
a single reflector might be observed as multiple fragments under the presence of an occluding element.
The latter effect is illustrated in Figure 8a,b, where the left person’s arm occludes the reflectors on the
safety vest and let’s them appear as four distinct blobs in the segmented foreground image. Based on this
observation, we choose to first regroup neighboring blobs by assigning them to a set of tracked objects
and then maintain a filtered estimate of each object’s state. Here, we specifically use the term object to
emphasize that in a first stage we choose to track all reflective objects regardless of their nature. Only in
a second stage, we infer an estimate whether an object represents a person by aggregating the classifier
scores ĉ provided individually with every assigned blob.

Therefore, let us assume that at a time instant t we are given a set of foreground blobs Breflex,t

representing all detected reflective items in the scene. For each blob a 3D position estimate p̂t and a
classification score ĉ has been computed:

Breflex,t =
{
B

[i]
t =

〈
Λ

[i]
t ,u

[i]
c , ĉ

[i]
t , p̂

[i]
t

〉
| i = 1, ..., Nt

}
(8)

In a first step we attempt to assign the blobs in Breflex,t to a set Ot of objects being tracked at time
instant t, using both 2D overlapping and 3D metric distance criteria. Then, based on the assignments,
we update the object states and initialize new objects for blobs that failed to be assigned to an existing
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tracking target. The objects in Ot are characterized by their 3D position and velocity state st, a tracking
consistency measure µt and an aggregated classification score ct that the tracked object corresponds to
a person:

Ot =
{
O

[j]
t =

〈
s

[j]
t , c

[j]
t , µ

[j]
t

〉
| j = 1, ...,Mt

}
(9)

The state vector st, consisting of the objects 3D position pt and velocity ṗt,

st = [pt ṗt]
> = [xt, yt, zt, ẋt, ẏt, żt]

> (10)

is recursively estimated by a particle filter. The consistency measure µt is used to assess to which extent
an object is continuously detected over a series of frames. It is initialized with µt = 1 when an object
is created. We then increment it by 1 in every frame where at least one blob is assigned to the object,
and decrement it by 1 in the opposite case. Objects are first initialized in a passive state as long as
their consistency measure µt is lower than an activation threshold λµ. The class membership score ct,
which reflects the chance that an observed object represents a person, is calculated as the average of
the corresponding estimates ĉ of all individual blobs assigned to the object up to time t. At a given
time instant t, an object is considered as a reflective safety garment if the score ct is higher than a
threshold λvest.

Every object is further represented by a 2D bounding box in the image plane which is used to define
a blob-object assignment criterion based on the overlap. The bounding box center thereby represents the
back-projection of the object position pt on the image plane. The size of the bounding box depends on
the distance of the tracked object and is chosen as the typical size of the human torso.

Our implementation of the particle filter uses the standard sequential importance resampling
algorithm [32]. The algorithm sequentially incorporates the obtained per-blob position estimates p̂t

by first predicting the object state transition from st−1 to st using the motion model before assigning
each particle an importance factor according to the measurement model. Particle resampling is then
performed according to the importance factors using a low variance resampler as proposed by [33]. An
initial set of particle is generated by uniformly distributing the particles in the state space.

3.6.1. Data Association

As stated above, it is most likely that multiple reflective blobs are detected if a single person with a
reflective safety garment is observed. On the other hand, a reflector cannot represent multiple objects at
the same time. In consequence, the first tracking step consists of a many-to-one mapping that assigns
blobs to currently tracked objects. For every potential assignment of a blob B[i] to an object O[j] we
define a cost function d(B,O) that takes a low value if it is likely that the i-th blob represents a reflector
of the j-th object and a high value in the opposite case.

The cost function is computed based on two criteria. First, the overlap of the blob area with the
bounding box of an object in the 2D image plane should be high. This is expressed by the overlap cost
function d∩, defined as

d∩(B,O) = 1− A(B) ∩ A(O)

A(B)
(11)
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where A(B) denotes the area delimited by the contour Λ of blob B, and A(O) the area covered by
the 2D bounding box of object O. At the same time, the absolute difference of the blob’s 3D position
estimate p̂t and the object’s current 3D position pt should be small. This is expressed by the distance
cost function dδ,

dδ(B,O) = 1− exp (−α× ||p̂t − pt||) (12)

with α a soft threshold that is heuristically chosen. Finally, we define the overall cost function for
assigning blob B to object O as the weighted sum of d∩ and dδ where the weights w∩ and wδ allow to
give a preference to one or the other criterion:

d(B,O) = w∩ × d∩(B,O) + wδ × dδ(B,O) (13)

a given blob B[i] is then assigned to the object O[j] for which the lowest assignment cost was computed,
under the restriction that this cost needs to be lower than a defined assignment threshold λd. If the lowest
computed assignment cost is above λd, a blob is considered to belong to an object which is not yet being
tracked and no assignment is made.

3.6.2. Object Update

Based on the blob-to-object assignments, we proceed to update the particle filter states st of all tracked
objects in O ∈ Ot. This is achieved by providing each object’s particle filter with the assigned blob
detections and applying the motion and measurement model, before resampling the particles.

The motion model first predicts the object state transition from st−1 to st using a description of the
system dynamics. In our case, a change of the state st of an object can be caused either by camera motion
or by motion of the observed object itself. We employ a simple constant velocity model of the form

st+1 =

[
I3×3 Ta · I3×3

03×3 I3×3

]
st + wt (14)

with Ta the inverse of the image pair acquisition rate and wt an independent white noise sequence of the
form N (0, σ) referred to as the process noise.

The measurement model then relates the per-blob position estimates p̂t to the object state vector
st by the measurement probability p(p̂t|st), describing the likelihood of making the observation p̂t

assuming that the state of the system is st. Figure 9 depicts the characteristic shape of the measurement
probability p(p̂t|st) in the x/z-plane for three different example states. Due to the processing scheme
employed to obtain a position estimate p̂t, the measurement uncertainty is different in the radial and
tangential direction and represented respectively by the standard deviations σrad and σtg. Uncertainty in
radial direction mainly originates from the distance estimation error committed by establishing erroneous
stereo correspondences. In contrast, the variance in the detection of the tangential position arises from
the fact that a detected reflector does not necessarily represent the center position of the observed human.
The likelihood of making a single observation p̂t, under the assumption of state st, is then given by the
multivariate Gaussian.
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Figure 9. 2D projection of the characteristic 3D measurement probability p(p̂t|st) for three
different example states s

[0]
t , s

[1]
t and s

[2]
t . The camera system is located at the origin.

The measurement probability is modeled by a multivariate normal distribution with specific
standard deviations σrad and σtg for the radial and tangential direction. The iso-lines show
one and two standard-deviations.
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1

(2π)
3
2 |Σ| 12

exp
(
−1

2
(p̂t − pt)

>Σ−1(p̂t − pt)

)
(15)

where the covariance matrix Σ is obtained using

Σ = Ry(θ)
>Rx(φ)>Σ0Rx(φ)Ry(θ) (16)

with θ and φ the azimuth and altitude angles of position pt,Rx andRy the rotation matrices around the x-
and y axes respectively and Σ0 the covariance matrix corresponding to states st situated on the camera’s
optical axis (cf. state s

[0]
t in Figure 9), given by:

Σ0 =

 σ2
tg 0 0

0 σ2
tg 0

0 0 σ2
rad

 (17)

finally, the complete measurement probability defines the likelihood to make the full set of observations
{p̂[1]

t , ..., p̂
[N ]
t } corresponding to the 3D position estimates of all blobs assigned to the current object.

Under the assumption that the noise in the individual measurements p̂[i]
t is independent, it is obtained by

the product of the individual measurement likelihoods p(p̂t|st):

p(p̂
[1]
t , ..., p̂

[N ]
t |st) =

N∏
i=1

p(p̂
[i]
t |st) (18)

The weights of all particles in the particle filter are updated according to the above measurement
likelihood and resampling is performed. Given the new set of particles, we update the state st of every
object by computing the weighted mean of all particles. To conclude the object update procedure, we



Sensors 2014, 14 17970

also recompute the other entities hold by an object, namely the classification score ct and the consistency
measure µt, both according to the rules described above. We also recompute the 2D bounding box of
each object by centering it around the back-projection of the new filtered 3D position estimate pt on the
image plane.

3.6.3. Object Initialization and Removal

Blobs in the set Breflex,t that failed to be associated to any tracked object are considered as candidates
for the initialization of new objects. To do so, we extract connected regions of similar disparity from the
previously computed disparity image and initialize a new object for every group of blobs that falls in the
same cluster. Finally, existing objects are removed either if their 2D bounding box falls out of the image
border or if their consistency measure ct reaches zero.

4. Experimental Results

Our human tracking system was evaluated by performing a set of experiments in two different
industrial real-world work environments. The first test environment is an outdoor gravel loading pit
where the camera system was mounted on the roof of a wheel loader (cf. Figure 10, left). Typical
loading and unloading scenarios were simulated, including sharp turns and alternate forward and reverse
driving up to 30 km/h. Apart from the host vehicle, a second wheel loader and a hauler were present
and a total of four persons were either walking in the area surrounding the machines or operating them.
Two test sequences from this environment are evaluated. Sequence 1 was recorded in cloudy weather
conditions and contains 3 min of video input. Sequence 2 contains 2 min of video and was recorded in the
evening when the sun was low and shining directly into the camera, leading to much higher background
illumination. Apart from the reflectors on the safety clothing, the only other reflective objects in the
environment were the cat’s eye reflectors on the vehicles.

Figure 10. Industrial vehicles on which the camera setup was mounted for the experiments:
Wheel loader (left) and forklift truck (right). The location of the sensor unit with NIR stereo
camera and 3D laser scanner (for ground truth data acquisition) is indicated in red.

The second test environment is an indoor manufacturing and maintenance site for industrial vehicles.
Numerous workers are present in the cluttered area, carrying out tasks in various body postures while
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often being partly occluded by the various objects in the scene. The sensor unit was mounted on the roof
of a forklift (cf. Figure 10, right) that was operated at speeds up to 20 km/h. Again, two test sequence
are evaluated, both corresponding to two minutes of video input. Sequence 3 represents a scenario in
which a considerable amount of reflective objects other than the safety clothing appear. The risk for the
system to output false alarms is therefore considerably higher. Seq. 4 specifically contains the scenario
of a person who has fainted lying on the floor.

As depicted in Figure 1, two different types of safety clothing were used throughout the experiment.
The two garments represent respectively safety class 2 and 3 of the ANSI/ISEA 107-2004 standard and
are distinguished by the amount and spatial distribution of the reflective strips.

A synchronized data stream from the NIR stereo camera was recorded at 50 fps, leading to
flash/non-flash image pairs available at 25 Hz. In addition, images from a color camera were recorded
for the purpose of visualization and to facilitate the manual annotation of the datasets. Several training
material datasets are collected in both environments. Both a binary Random Forest and a Support Vector
Machine blob classifier are trained on 200 k samples from reflective vest reflectors (positives) and 100 k
other reflective objects (negatives). In addition to the camera system, we further equip the sensor unit
with a Velodyne HDL-64E 3D LIDAR in order to extract ground truth positions of the tracked persons.
All reflectors in the datasets are assigned a manual label whether they represent a safety garment or not.
Furthermore, a second label with the ground-truth distance and 3D position of every reflector relative to
the camera system is extracted from the LIDAR data. The values of the various system parameters as
used throughout the experimental evaluation are listed in Table 1.

Table 1. Values of the system parameters used throughout the experimental evaluation.

Image Acquisition and Panoramic Unwrapping
Image Pair Acquisition Rate fa = T−1

a 25 Hz
If/Inf Acquisition Delay ta 10 ms
Panoramic Image Resolution W ×H 800× 530 px
Panoramic Field-of-view α, β 90◦, 55◦

Segmentation
Adaptive Thresholding Window Size wth × wth 21× 21 px
Adaptive Thresholding Offset cth 40
Reflectivity Threshold λ∆ 30

Localization
Disparity Extraction Zone s 4

Tracking
Object Consistency Threshold λµ 3
Blob-Object Assignment Cost Function Weights w∩, wδ 1.5, 1.0
Blob-Object Assignment Cost Threshold λd 0.5
Object Classification Threshold λvest 0.7
Measurement Model Uncertainty σrad, σtg 0.25, 0.075
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Figure 11. Precision-recall curves showing the classification of individual blobs into reflectors
of a safety garment and other reflectors. The curves indicate classification performance
as obtained using the state-of-the-art image feature descriptors SURF, BRIEF, FREAK,
and ORB in combination with two popular classifier models, a Random Forest (RF) and
a Support Vector Machine (SVM). Solid lines represent the output of a Random Forest
classifier while the dashed line indicates classification results obtained using a Support
Vector Machine.
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4.1. Reflector Classification

We first assess the system’s ability to discriminate between the reflectors of a safety garment and
other reflective objects in the scene. More specifically, we evaluate the supervised learning-based binary
classification process as described in Section 3.5, using different choices of state-of-the art image feature
descriptors in combination with two popular classifier models, namely a Random Forest and a Support
Vector Machine. Figure 11 depicts classification performance in the form of precision-recall curves. The
results are regrouped according to the environment in which the data was recorded.

4.2. Tracking

We evaluate the output of the tracking module by using criteria defined in the 2D image space. We
first manually annotate the trajectories of all humans in every 5th frame of a video sequence. Therefore,
we draw bounding boxes around every person’s torso and assign a trajectory label to every box. A
new trajectory is counted every time a person is occluded during more than 10 consecutive frames. In a
single frame, we define a trajectory as hit if its bounding box overlaps with the bounding box of a tracked
person by more than 50 percent. In the opposite case, the trajectory is defined as missed in the given
frame. A trajectory that is hit in more than 75% of the frames in which the corresponding person appears
is declared mostly hit. Similarly, we declare a trajectory as mostly missed if it is hit in less than 25%

of frames. The average trajectory coverage indicates the mean hit ratio over all different trajectories.
Finally, we consider false alarms that we define as tracked reflective objects that are mistakenly classified
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as humans. If the same misclassified object appears over several successive frames, we count only one
false alarm.

Tracking performance according to the above measures is shown in Figures 12 and 13 while numerical
results for the case of a BRIEF descriptor and a classification threshold of λvest = 0.7 are summarized
in Table 2. Only the Random Forest classifier was used for blob classification. Example tracking results
are depicted in Figure 14 whereas Figure 15 illustrates different types of erroneous tracker outputs.

Figure 12. The figures show the tracking rates, defined as the ratios of mostly hit and mostly
missed trajectories of humans appearing in the image sequence. The results are shown for
different choices of feature descriptors and a varying classification threshold λvest.
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Figure 13. Number of false alarms per frame depending on the feature descriptor and
the classification threshold λvest in use. No graph is shown for sequence 2, as it does not
contain any reflectors other than the ones on the safety garments, leading to zero false alarms
independent of the classification threshold.
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Table 2. Quantitative tracking results obtained using a BRIEF feature descriptor in
combination with a classification threshold. λvest = 0.7

Sequence Number of

Trajectories

Mostly Hit

Trajectories

Mostly Missed

Trajectories

Average Trajectory

Coverage

False

Alarms

1 30 26 2 80.1% 2

2 30 25 0 81.8% 3

3 28 18 2 72.2% 10

4 16 11 0 77.5% 3
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Figure 14. Exemplary tracking results for the test sequences 1–4. The detections obtained
from the NIR camera are projected on the color image and indicated with a yellow square.

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Figure 15. Erroneous tracker outputs: (a) missed detection of a person (marked with a
red circle) in a body position that hides all reflectors of the safety clothing; (b) missed
detection of a person that is tracked but misclassified as a non-human; (c) false alarms;
and (d) occasional grouping of persons that stand close to each other.

(a) (b) (c) (d)
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5. Discussion

Section 4.1 presents an evaluation of the system performance in classifying individual reflective
blobs into a group of reflectors originating from safety clothing and a group of other reflectors. The
results clearly indicate that a Random Forest is to be preferred to a Support Vector Machine for the
underlying classification problem. In terms of the feature descriptor in use, the optimal choice is less
clear. BRIEF, FREAK, and ORB descriptors all show good performance. In fact, all three descriptors
are of similar nature and consist of binary variables that represent the output of pairwise intensity
comparisons at different sampling locations within the interest region. Their performance is similar in
both test environments with BRIEF offering the best overall performance. SURF descriptors work less
well, even though this is difficult to generalize, as SURF used to rank better in earlier experiments [3].

The tracking results presented in Figures 12–14 and Table 2 indicate good performance over all four
test scenarios. The evaluated sequences feature multiple persons that often appear in rather unusual,
non-upright body positions and were still reliably detected and tracked by the system, even though
the classifier was not specifically trained on all possible body poses. The choice of the classification
threshold λvest is a trade-off between achieving good tracking rates (cf. Figure 12) and a low number of
false alarms (cf. Figure 13). With the exact choice of the value λvest, one can give a preference to either
the first or the second goal.

Figure 12 also indicates that even for low classification thresholds, the ratio of mostly tracked
trajectories is not 100%. A closer analysis of these cases revealed three main reasons. First, as our
tracker needs to consistently observe an object over a series of frames before considering it as valid, the
coverage of very short trajectories can be significantly reduced. Second, some persons appeared outside
the sensor range where no foreground regions could be segmented because the reflected portion of the IR
flash was too weak to produce strong enough high-intensity regions. Third, some trajectories represent
humans that were occluded to such a high degree that the reflectors on the garment were not or only
barely visible.

Our method of tracking industrial workers by observing the reflective patterns on their safety clothing
has a number of key advantages over conventional vision-based human detectors. When working in the
visible-light range, the performance of detection modules usually decreases gradually as the illumination
becomes weaker and the images lose contrast. Especially night time pedestrian detection, therefore,
remains an open issue that has been addressed only by limited studies on thermal vision [6]. At the same
time, detection can fail in extreme illumination conditions where the camera directly faces a strong light
source such as the sun, leading to overexposed images. When evaluating human detection systems, a
performance assessment in such exceptional situations is most often left out by the authors. However,
for safety critical industrial applications, robust performance also in the most challenging conditions is
crucial. During the experimental evaluation, we found our method to cope well with a wide range of
different illumination conditions without showing significant performance differences. Especially the
results obtained for test sequence 2 illustrate that the system still performs accurately even if the camera
setup directly faces the sun. In addition, as we actively illuminate the scene when acquiring the images,
our system performs equally well in complete darkness as in broad daylight.
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Another strength of our approach is the robustness towards partial occlusion. Existing approaches that
are most successful in detecting partially occluded persons are based on models that divide the human
body into different parts that are individually detected and classified. On the other hand, we found our
own approach to be robust to partial occlusions, even though it is not relying on any complex body
appearance model. Several successful detections of partly occluded persons are shown in Figure 14.

As a consequence of the adopted detection method, our system also comes with a certain number of
limitations. While the detection of the reflective markers on the worker’s safety garments is reliable as
long as they are visible to the camera, the method is obviously doomed to fail if the reflectors are fully
occluded. In practice, this scenario has only been encountered in very rare occasions though, namely if
the target person appears in unusual body positions in which the biggest parts of the safety garment are
occluded to the camera (cf. Figure 15a). Here, the type of safety clothing in use can play an important
role, as garments with a higher safety class are covered with larger areas of reflective material, making a
complete occlusion unlikely.

In contrast to other approaches that are able to identify the full silhouette of a person, such as [34], our
method also has to deal with the limitation to detect only body parts that are covered with retro-reflective
markers. Typically, this is just the case for the upper body while the legs are not detected unless people
wear additional reflective safety trousers. By specifically tracking the reflectors of safety clothing, our
system further provides alarms regardless of whether or not a garment is actually worn by a person.

By solely observing the reflective patterns of safety garments, it is further difficult to preserve the
exact number of tracked persons as well as their identity in cases where two or more humans interact
with each other. This is due to the fact that the appearance of the different persons is very similar,
especially when working with images that only show the reflective pattern of the safety garments. Here,
the use of a conventional visible-light camera could help to better discriminate individual persons from
each other.

6. Conclusions

In this article, we presented a novel approach for multi-person tracking in industrial work
environments in which humans wear reflective safety garments. To the best of our knowledge, our
approach is unique in the sense that we perform human tracking solely by observing the reflective
patterns that the safety clothing produces in the images acquired with our customized camera setup.
Using a monochrome stereo camera setup equipped with flash that operates in the NIR range, we
acquire images that considerably simplify the extraction of interest regions in which reflective material
appears. Depth and 3D location for the detected reflectors is inferred by locally computing disparities
in the area close to the blob contour. Using supervised-learning based classification of the observed
reflective patterns, we further discriminate humans wearing a safety garment from other objects with high
reflectivity commonly encountered in an industrial work site. The detected reflectors are then regrouped
and assigned to objects whose position and speed relative to the camera are recursively estimated over
time using particle filtering.

We evaluated our system on two different moving vehicles in challenging industrial indoor and
outdoor environments. The results indicate that our approach achieves accurate detection and tracking

doubu
Cross-Out
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performance under various and difficult illumination conditions for distances ranging up to 20 m. The
robustness towards different illumination conditions offers a clear advantage over many existing human
tracking systems. In fact, our camera system operates without significant performance difference in
conditions ranging from broad daylight to complete darkness. Furthermore, it has been shown that
our system is capable to detect humans not only in upright but in arbitrary body positions. Especially
in industrial work sites, this is an important property as a large variety of human body postures are
typically encountered.

Author Contributions

Rafael Mosberger is responsible for the design and implementation of the algorithms presented in the
manuscript. Henrik Andreasson and Rafael Mosberger both contributed to the hardware design, the data
collection, and the setup of the scientific experiments. Rafael Mosberger drafted the manuscript while
Henrik Andreasson and Achim J. Lilienthal both supervised the work and contributed to the revision
process. All listed authors discussed and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Andreasson, H.; Bouguerra, A.; Stoyanov, T.; Magnusson, M.; Lilienthal, A. Vision-Based people
detection utilizing reflective vests for autonomous transportation applications. In Proceedings of
the IROS Workshop on Metrics and Methodologies for Autonomous Robot Teams in Logistics
(MMART-LOG), San Francisco, CA, USA, 25–30 September 2011.

2. Mosberger, R.; Andreasson, H. Estimating the 3D position of humans wearing a reflective vest
using a single camera system. In Proceedings of the International Conference on Field and Service
Robotics (FSR), Matsushima, Japan, 16–19 July 2012.

3. Mosberger, R.; Andreasson, H. An inexpensive monocular vision system for tracking humans in
industrial environments. In Proceedings of the 2013 IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 5850–5857.

4. Mosberger, R.; Andreasson, H.; Lilienthal, A.J. Multi-Human tracking using high-visibility
clothing for industrial safety. In Proceedings of the 2013 IEEE International Conference on
Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–8 November 2013; pp. 638–644.

5. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: An evaluation of the state of the
art. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761.

6. Geronimo, D.; Lopez, A.M.; Sappa, A.D.; Graf, T. Survey of pedestrian detection for advanced
driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1239–1258.

7. Dollár, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: A benchmark. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami Beach, FL,
USA, 20–25 June 2009; pp. 304–311



Sensors 2014, 14 17979

8. Enzweiler, M.; Gavrila, D.M. Monocular pedestrian detection: Survey and experiments.
IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2179–2195.

9. Gandhi, T.; Trivedi, M.M. Pedestrian protection systems: Issues, survey, and challenges.
IEEE Trans. Intell. Transp. Syst. 2007, 8, 413–430.

10. Gavrila, D.M.; Giebel, J.; Munder, S. Vision-Based pedestrian detection: The PROTECTOR
system. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June
2004; pp. 13–18.

11. Elzein, H.; Lakshmanan, S.; Watta, P. A motion and shape- based pedestrian detection algorithm. In
Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003;
pp. 500–504.

12. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA,
20–26 June 2005; pp. 886–893.

13. Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable
part model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Anchorage, AK, USA, 24–26 June 2008; pp. 1–8.

14. Comaniciu, D.; Meer, P.; Member, S. Mean shift: A robust approach toward feature space analysis.
IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619.

15. Gelb, A., Kasper, J.F., Nash, R.A., Price, C.F., Sutherland, A.A., Eds. Applied Optimal Estimation;
MIT Press: Cambridge, MA, USA, 1974.

16. Giebel, J.; Gavrila, D.M.; Schnorr, C. A bayesian framework for multi-cue 3D object tracking.
In Proceedings of European Conference on Computer Vision (ECCV), Prague, Czech Republic,
11–14 May 2004; Springer–Verlag: Berlin/Heidelberg, Germany, 2004; pp. 241–252.

17. Teizer, J.; Vela, P.A. Personnel tracking on construction sites using video cameras. Adv. Eng. Inf.
2009, 23, 452–462.

18. Dickens, J.S.; van Wyk, M.A.; Green, J.J. Pedestrian detection for underground mine vehicles
using thermal images. In Proceedings of IEEE Africon Conference, Livingstone, Zambia, 13–15
September 2011; pp. 1–6.

19. Heimonen, T.; Heikkilä, J. A human detection framework for heavy machinery. In Proceedings of
the International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010;
pp. 416–419.

20. Teizer, J.; Allread, B.S.; Fullerton, C.E.; Hinze, J. Autonomous pro-active real-time construction
worker and equipment operator proximity safety alert system. Autom. Constr. 2010, 19, 630–640.

21. Park, M.W.; Brilakis, I. Construction worker detection in video frames for initializing vision
trackers. Autom. Constr. 2012, 28, 15–25.

22. Scaramuzza, D.; Martinelli, A.; Siegwart, R. A flexible technique for accurate omnidirectional
camera calibration and structure from motion. In Proceedings of the IEEE International Conference
on Computer Vision Systems (ICVS), New York, NY, USA, 4–7 January 2006.

23. Suzuki, S.; Be, K. Topological structural analysis of digitized binary images by border following.
Comput. Vision Graph. Image Process. 1985, 30, 32–46.



Sensors 2014, 14 17980

24. Bouguet, J.Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the
Algorithm, 2000. Available online: http://robots.stanford.edu/cs223b04/algotracking.pdf (accessed
on 19 September 2014).

25. Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans.
Pattern Anal. Mach. Intell. 2008, 30, 328–341.

26. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. SURF: Speeded Up Robust Features. Comput. Vision
Image Underst. (CVIU) 2008, 110, 346–359.

27. Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary Robust Independent Elementary
Features. In Proceedings of the European Conference on Computer Vision (ECCV), Heraklion,
Crete, Greece, 5–11 September 2010; Volume 6314, pp. 778–792.

28. Leutenegger, S.; Chli, M.; Siegwart, R. BRISK: Binary Robust Invariant Scalable Keypoints. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain,
6–13 November 2011; pp. 2548–2555.

29. Ortiz, R. FREAK: Fast Retina Keypoint. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 510–517.

30. Cortes, C.; Vapnik, V. Support-Vector networks. Mach. Learn. 1995, 20, 273–297.
31. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
32. Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel approach to nonlinear/non-gaussian bayesian

state estimation. IEEE Proc. F (Radar Signal Process.) 1993, 140, 107–113.
33. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous

Agents); The MIT Press: Cambridge, MA, USA, 2005.
34. Leibe, B.; Leonardis, A.; Schiele, B. Robust object detection with interleaved categorization and

segmentation. Int. J. Comput. Vision 2008, 77, 259–289.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Related Work
	System Description
	Hardware and Camera Model
	Image Acquisition and Panoramic Unwrapping
	Blob Detection and Reflectivity Check
	Local Disparity Computation and 3D Projection
	Blob Description and Classification
	Data Association and Tracking
	Data Association
	Object Update
	Object Initialization and Removal


	Experimental Results
	Reflector Classification
	Tracking

	Discussion
	Conclusions

