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Abstract— We address the problem of extracting human body
posture labels, upper body orientation and the spatial location
of individual body parts from near-infrared (NIR) images
depicting patterns of retro-reflective markers. The analyzed
patterns originate from the observation of humans equipped
with protective high-visibility garments that represent common
safety equipment in the industrial sector. Exploiting the shape
of the observed reflectors we adopt shape matching based on the
chamfer distance and infer one of seven discrete body posture
labels as well as the approximate upper body orientation
with respect to the camera. We then proceed to analyze the
NIR images on a pixel scale and estimate a figure-ground
segmentation together with human body part labels using
classification of densely extracted local image patches. Our
results indicate a body posture classification accuracy of 80%
and figure-ground segmentations with 87% accuracy.

I. INTRODUCTION
Human detection is a fundamental problem in computer

vision and plays an important role in the field of robotic
perception. Especially in applications where robots need to
operate safely in the vicinity of human workers and where
human-robot interaction is required, robust human perception
becomes a crucial prerequisite. However, it is in many
situations not sufficient that a robot is aware of the presence
and location of a person only. Additional attributes regarding
the state of a person such as body posture, orientation, or the
current activity are often required to execute planning tasks
in human-robot interaction scenarios.

Our work builds on an active near-infrared (NIR) sensing
approach proposed for the robust perception and localization
of human workers wearing protective garments with retro-
reflective markers [1]. The main idea behind the method
is to base human detection entirely on the active sensing
of the reflective markers and thereby remain independent
from adverse lighting conditions which usually affect images
acquired by conventional visible-light cameras. The method
has been shown to reliably detect and track industrial workers
in various indoor and outdoor environments.

Building on the robust sensing principle and focusing
on applications that require close human-robot interaction,
this article addresses the estimation of multiple entities of
interest connected to the human body pose. We equip human
workers with a two-piece set of conventional protective work
garments comprising jacket and trousers with a total of 13
retro-reflective markers (cf. Fig. 1, left). We then present a
method for estimating discrete human body posture labels
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Fig. 1: The figure illustrates the purpose of the proposed
method. Human workers equipped with reflective work cloth-
ing (left) are captured by an active NIR camera. The resulting
reflective patterns (middle) are analyzed to estimate body
posture and orientation and to perform a pixel-wise image
segmentation into to several human body parts (right). The
RGB image is used for visualization purposes only.

(standing, sitting, lying, etc.) and the approximate upper
body orientation, purely by analyzing the reflective patterns
created by the safety garments in NIR images (cf. Fig. 1,
middle). Furthermore, we describe a method for obtaining
a pixel-level figure-ground segmentation with estimation of
individual body part labels (cf. Fig. 1, right). Our approach
uses established techniques such as shape matching based on
the chamfer distance as well as sliding window classification.

Our article makes the following principal contributions:
i) We study the problem of estimating human body posture
labels and an approximate upper body orientation from
patterns of reflective markers, for the case where the patterns
cannot be designed but are given by conventional industrial
work garments. ii) A method is proposed for estimating
pixel-wise figure-ground and human body part labels by
sliding window classification of local image patches. iii) We
evaluate our approach on image sequences from a working
scenario covering a broad range of different body poses.

II. RELATED WORK

The human sensing approach based on active NIR vision
proposed in [1] stands in strong contrast to conventional
vision-based methods relying on visible-light images. The
combination of NIR camera, optical filter and active illu-
mination allows the sensor device to acquire of images in
which retro-reflective markers appear highly separated from
the image background (cf. Fig. 3). Detection is then entirely
based on the analysis and classification of reflective patterns.

The approach is limited to applications where it can
be assumed that humans are equipped with retro-reflective
garments. In return, the approach offers high robustness to
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Fig. 2: Industrialized version of the active RefleX vision
system proposed in [1], offering active stereo NIR and
monocular RGB input. The camera module is designed
for the robust perception and localization of retro-reflective
markers under varying lighting conditions.

strongly varying lighting conditions and copes with both low-
light and back-light conditions where visible-light cameras
struggle to produce images with good contrast. In addition,
it copes with highly varying body positions. Applications
where the sensing principle has been applied include detec-
tion and tracking of human workers at industrial work sites
[1] and leader tracking for a walking logistics robot in off-
road environments [2].

In [3], the approach has been further extended by pro-
cessing the NIR images with a Hough forest detector [4].
Hough forests have been shown to be an efficient and
flexible tool for vision-based human detection, localization
and tracking [4], pose estimation [5], image segmentation [6],
or action recognition [7]. With the introduction of the multi-
band Hough forest detector in [3], the concept of Hough
forests was adapted to the case where the same image scene
is observed by multiple cameras from the same viewpoint
but in different spectral frequency bands. The proposed
extension simultaneously fuses NIR and RGB information
and performs a generalized Hough transform that maps local
observations of reflective patterns to the location of a defined
reference point on the person appearing in the image.

While the work in [3] purely deals with the detection
and tracking stage, our work addresses the question to what
degree body pose information can be inferred from the
reflective patterns. This problem is different from the one in
human motion capture (mo-cap) with passive retro-reflective
markers, in the sense that mo-cap systems most often observe
the target from multiple viewpoints and involve strategic
placement of distinguishable retro-reflective markers on spe-
cific human body landmarks (e.g. [8]). Here, we adopt a set
of customary protective work clothes where neither the shape
of the individual reflectors nor their spatial arrangement has
been specifically designed.

The focus of this article is not on presenting a novel
methodological approach. Instead, we concentrate on il-
lustrating that posture classification and body orientation
estimation for human workers can be performed even if only
strongly reduced NIR sensor data is available. As opposed
to more standard RGB input, the NIR input images used
in this work depict solely the reflective markers of standard
safety garments and the applied methods include established
techniques such as sliding window classification and chamfer
distance mathing [9].

Fig. 3: Sensor data provided by the camera unit used in
this work, comprising single RGB and stereoscopic near-
infrared (NIR) images taken with active illumination. The
NIR images show retro-reflective markers that appear highly
separated from the image background.

III. METHOD

This section describes our method for estimating multiple
entities of interest from NIR images depicting patterns of
retro-reflective markers. The patterns originate from an active
NIR camera setup that observes human workers wearing
protective work garments (cf. Fig. 6c). The estimated entities
of interest comprise:
1.) Body Posture: We estimate a discrete body posture label
describing a person as either standing, stooping, squatting,
crawling, sitting, kneeling or lying.
2.) Upper Body Orientation: We estimate the orientation
of the human upper body in the horizontal plane and with
respect to the camera, within a discretized angular space
containing 8 different bins (cf. Fig. 5).
3.) Figure-ground Segmentation: We aim to obtain pixel-wise
figure-ground labels with respect to the human silhouette.
4.) Body Part Labels: For all pixels classified as figure pixels,
we further assign a label declaring them as either head, torso,
left/right arm, or left/right leg.

Entities 1 and 2 describe attributes on a per-person level,
and our approach for estimating them involves observing
the entire reflective pattern of a person at once. In contrast,
entities 3 and 4 describe information on a per-pixel level and
have to be analyzed on a more local scale. The remainder
of this section, summarizes the sensor and sensor data on
which our method is based, and describes the method for
estimating the defined entities of interest.

A. Hardware and Sensor Data

The sensor unit adopted in the underlying work is an
industrialized version of the vision system described in [1].
The sensor, coined the RefleX Vision System (cf. Fig. 2),
perceives and localizes retro-reflective markers by means
of a stereo pair of near-infrared (NIR) cameras equipped
with bandpass filter and active illumination. The module
further comes with a single RGB camera placed in between
the two NIR cameras. The functional principle and spectral
specifications of the sensor are illustrated in Fig. 4 while
Fig. 3 shows an example image triplet acquired with the
camera. We emphasize at this point, that for the work
presented in this article we make use of the RGB data solely
for data annotation and visualization purposes.
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Fig. 4: Characteristics of the sensor module used in this work: (a) Operation principle of the NIR sensor designed to acquire
images that discriminate objects with high reflectivity from the background. Sunlight and other ambient light (yellow) is
largely filtered by the optical bandpass filter (green), resulting in a dark image background. The NIR light emitted by the
active sensor unit (red) is backscattered by the retro-reflective markers of the high-visibility garments and transmitted by the
bandpass filter, leading to brightly depicted reflectors in the image. (b) Relative spectral characteristics of the bandpass filter
(green) and the active light source (red). The yellow curve represents the solar irradiation spectrum at sea level (Source:
ASTM International). The operation wavelength of 940nm is chosen to exploit the negative peak in the sun spectrum and
limit background illumination in outdoor applications.
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Fig. 5: For the estimation of the upper body orientation,
we divide the angular range into 8 bins and formulate the
estimation of angle α as a classification problem.

B. Preprocessing and Data Annotation

Preprocessing involves extracting and localizing the reflec-
tive markers from each stereo pair of NIR images according
to the approach described in [1]. Furthermore, we assume
in our work that a Hough forest based detector as proposed
in [3] has been applied to the NIR input image pair, re-
sulting in individual human detections comprising the two-
dimensional image coordinates of a defined object reference
point and a characteristic scale. Here, we consider these
entities as given and manually annotate the reference points
in the input images while a scale is directly extracted from
the depth of the reflective markers. We specifically adopt the
term reference point (cf. Fig. 6b) instead of object center as
used in [4], to emphasize that this point does not necessarily
coincide with the centroid of the object silhouette nor with
the center of the bounding box.

C. Global Template Matching

Here, we consider the problem of taking a square scale-
normalized NIR images depicting the full reflective pattern
of a worker and estimate the corresponding body posture and
upper body orientation in the horizontal plane. We approach
the problem by storing a set T = {Ti} of exemplary scale-

normalized NIR image templates Ti (cf. Fig. 6) depicting the
reflective patterns of human workers in a variety of different
body positions and orientations with respect to the camera.
The templates are extracted from a square region centered
around the object reference points (cf. Fig. 6b) previously
annotated during preprocessing and with a window size
chosen such that the entire reflective pattern of a person
is visible. Scale normalization is applied by exploiting the
stereo depth measurements obtained during the preprocessing
stage. The templates are further annotated with the ground-
truth entities of interest for future use. In summary, each
template Ti = {U , r,A} is characterized by the set of
reflector edge points U = {uj} extracted during prepro-
cessing (cf. Fig. 6d), the location of the object reference
point r within the template, and the ensemble A of annotated
ground-truth entities comprising a discrete body posture label
and discrete upper body orientation according to Fig. 5.

We then consider a test image I depicting a human worker
for which the body posture and upper body orientation
is unknown and needs to be estimated from the set of
templates T . The test image I = {V} with reflector edges
V = {vk} is assumed to be scale-normalized and centered
around the object reference point in the same way as the
templates, for instance by applying the Hough forest detector
proposed in [3]. We then define the chamfer distance between
the edge map V of the test image and edge map U of a given
template as

dchamfer(V,U) =
1

|V|
∑

vk∈ V
min
uj∈U

||vk − uj || (1)

which can be efficiently computed using the distance trans-
form (DT),

dchamfer(V,U) =
1

|V|
∑

vk∈ V
DTU (vk) (2)

where DTU (x) = minuj∈ U ||x − uj ||1. We then identify
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Fig. 6: Example template consisting of (a) the RGB image used for data annotation, (b) annotated entities comprising
bounding box, reference point (black star), posture label, body orientation according to Fig. 5, as well as pixel-wise body
part and figure-ground labels, (c) the input NIR image processed by our algorithm, (d) the extracted edge map describing
reflector outlines, and (e) the corresponding distance transform used for computing chamfer distances.

the template TNN with the most similar reflective pattern
by performing a nearest neighbor search across the template
set T , while adopting the symmetric version of the chamfer
distance for increased robustness:

TNN = argmin
Ti

[
dchamfer(U ,Vi) + dchamfer(Vi,U)

]
(3)

The final estimates for body posture and upper body orien-
tation are directly inferred from the annotations A of the
nearest-neighbor template TNN. We emphasize at this point
that no spatial alignment between the templates and a test
image is performed. We assume that the reference point of
a person has been previously identified and that both the
templates and test images are centered around the reference
point and can directly be compared without alignment.

D. Local Pixel-wise Image Segmentation

In a second step, we analyze the test image I on a pixel
level and estimate a figure-ground map as well as a map
of human body parts. To do so, we adopt the notion of
local image patches connected to the object reference point
as known from the Hough forest framework [4]. We start
by enhancing each template of the previously established
template set T with a segmentation map S(x) that declares
each pixel x as either background or member of a specific
human body part (cf. Fig. 6b), namely torso, head, left/right
arm or left/right leg. From the enhanced set of templates we
extract a large set P of square local image patches, sampled
from random locations in the templates that contain reflective
markers. Each patch stores its local segmentation map, the
subset of reflector edges that fall inside the patch borders, as
well as an offset vector d that represents the position of the
object reference point r in the template with respect to the
upper-left corner of the patch.

Given a test image with known object reference point r
but unknown pixel labels, we perform image segmentation
by densely extracting and classifying local patches in sliding
window fashion as illustrated in Fig. 7. Classification is
carried out by a nearest neighbor search across the patch
set P with the chamfer distance as distance measure. At
each sliding window position q, the matched patch in set
P casts votes for pixel labels at the respective position of

the sliding window. However, votes are restricted to matches
which agree on the relative spatial position from the object
reference point, by defining a weighting function for the vote
casting, according to:

w(q) =

{
1 if ||q+ d− r||2 < tc

0 otherwise

}
(4)

Votes are accumulated in a 3-dimensional histogram where
the first two dimensions represent the image space and
the third dimension the labels to be estimated. The final
segmentation is obtained in two steps. First, a pixel-wise
search for the foreground label that accumulated the most
votes is carried out. Second, the resulting image from step
one is masked by setting all pixels to background for which
the background channel has accumulated more votes than all
foreground channels together.

IV. EXPERIMENTS

We report an experimental evaluation of the proposed
method and assess to what extent the desired entities of
interest can be estimated from the available NIR data. To the
best of our knowledge, no datasets are publicly available that
combine the type of sensor data and application scenarios ad-
dressed with our work. We therefore perform an experimental
evaluation on a proprietary set of acquired video sequences
containing an actual work scenario. All classification results
are presented as confusion matrices where rows show the
ground truth and columns the classification output.

Test NIR Image

Object Reference Point

Patch Database

Matching

Match

DT1P1 S1

DT2P2 S2

DT3P3 S3
?

tc

. .
 .

Fig. 7: The figure illustrates the sliding window based patch
classification and offset vector verification (cf. Eq. 4).
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Fig. 8: Experimental results in terms of (a) human body posture classification, (b) upper body orientation classification
(binning shown in Fig. 5), and (c–e) pixel-wise image segmentation. Segmentation is evaluated separately for (c) figure and
ground pixels, (d) body parts without and (e) with discrimination of left and right limbs.

A. Data Collection and Preprocessing

Multiple video sequences are acquired with the RefleX
sensor unit (cf. Sec. III-A) in an indoor working environment.
The camera is mounted forward-facing at a height of 1.5 me-
ters above ground on a mobile robot. The recorded sequences
show a total of 3 persons engaged in a working scenario
that involves moving, lifting and transporting objects and
carrying out tasks in a range of body positions. All persons
are equipped with the same set of unmodified off-the-shelf
high-visibility garments consisting of jackets and trousers
with a total of 13 retro-reflective markers.

Each time frame of a sequence consists of an image
triplet with one RGB and two NIR pictures (cf. Fig. 3) at a
resolution of 800×600 pixels. The RGB image is held back
and used for data annotation purposes only. All sequences are
preprocessing to extract the reflective markers and estimate
their depth from each stereo pair of NIR images according
to [1]. 75% of the acquired and preprocessed video sequences
are used for training while 25% are held back as test data.

B. Body Posture Classification

We assess the extent to which discrete human posture
labels can be estimated from individual single-channel NIR
frames by nearest neighbor matching of test images to a
set of templates as described in Sec. III-C. A total of 750
templates of size 180×180 pixels are extracted at normalized
scale and manually annotated with ground-truth body posture
labels to form the template database T . We then report
classification performance on 250 test images in Fig. 8a.
The results reveal a high classification performance with
approximately 80% of correctly classified body postures.
Most errors are made by classifying stooping persons as
upright standing. A further uncertainty is observed in the
estimation of the postures sitting, kneeling and squatting,
which are postures with floating borders.

C. Upper Body Direction Classification

As a second entity, we estimate the upper body orientation
in the horizontal plane with respect to the camera according
to the discretized angular space illustrated in Fig. 5. The
resulting classification performance is shown in Fig. 8b. The
overall accuracy in estimating the correct orientation bin
amounts to approximately 50% and lies significantly below
the value achieved for the body posture labels. However, it is
observed that 55% of the misclassified samples are assigned
to an orientation bin next to the correct one. In average, the
absolute angular estimation error amounts to 46◦.

D. Figure-ground and Human Body Part Labels

We further evaluate the estimation of pixel-wise figure-
ground and human body part labels by dense classification
of local patches as described in Sec. III-D. As a much higher
data annotation effort is required on a per-pixel level, we use
a reduced data set of 300 templates and 100 test images.
From the annotated templates, we extract a total of 10k
local image patches of size 40×40 pixels from local regions
depicting reflective markers in the NIR image. Segmentation
is then performed by densely classifying feature patches from
the test images as described in Sec. III-D using a center
verification threshold tc of 10 pixels (cf. Eq. 4). The segmen-
tation accuracy with respect to figure-ground and body part
labels is shown in Fig. 8c–e while Fig. 9 illustrates several
qualitative examples of input and output images together with
the ground-truth and estimated labels. The results illustrate
that the segmentation allows for a better interpretation of
the human body pose than the raw NIR image. Fig. 8d and
Fig. 9e indicate that a discrimination of the four main groups
of body parts considered here (head, torso, arms and legs) is
possible to a large extent. However, Fig. 8e and Fig. 9d reveal
a major difficulty in discriminating left and right limbs. This
is hard to overcome as multiple body configurations can
result in an identical reflective pattern. Further figure-ground
segmentation deficiencies are observed at locations where no
reflective marker is present.
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(a) (b) (c) (d) (e)

Fig. 9: Qualitative results of the pixel-wise image segmentation based on pure NIR input: (a) RGB image used for data
annotation, (b) NIR input image, (c) manually annotated ground-truth body part labels, (d) estimated labels, and (e) estimated
labels if no discrimination between left and right limbs is made.

V. CONCLUSION AND FUTURE WORK

In this article we addressed the problem of recovering
human body posture information and upper body orientation
from sensor data that depicts exclusively patterns of reflective
markers originating from the observation of humans wear-
ing conventional protective work garments. Furthermore we
estimate pixel-wise figure-ground labels and performed an
image segmentation into multiple human body parts.

To the best of our knowledge, we are the first authors to
propose a method for estimating body posture, orientation,
figure-ground labels and body-part segmentation from the
reflective patterns produced by standard work clothing. Our
results illustrate that the estimation of these entities from the
type of sensor data use in this work is principally possible. As
a main limitation of the approach we identified the difficulty
to resolve ambiguities between the left and right arms and
legs during image segmentation. Nevertheless, the proposed
method has a range of potential applications in industrial
scenarios, owing to its high robustness to adverse ambient
lighting conditions.

Future work involves investigating methods for matching
templates and local image patches in more efficient ways by
adopting tree-based search methods where large numbers of
hypotheses can be excluded at an earlier stage.
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