Using sketch-maps for robot navigation: interpretation and matching

Malcolm Mielle, Martin Magnusson, Achim J. Lilienthal

Abstract— We present a study on sketch-map interpretation
and sketch to robot map matching, where maps have nonuni-
form scale, different shapes or can be incomplete. For humans,
sketch-maps are an intuitive way to communicate navigation
information, which makes it interesting to use sketch-maps for
human robot interaction; e.g., in emergency scenarios.

To interpret the sketch-map, we propose to use a Voronoi
diagram that is obtained from the distance image on which a
thinning parameter is used to remove spurious branches. The
diagram is extracted as a graph and an efficient error-tolerant
graph matching algorithm is used to find correspondences,
while keeping time and memory complexity low.

A comparison against common algorithms for graph ex-
traction shows that our method leads to twice as many good
matches. For simple maps, our method gives 95% good matches
even for heavily distorted sketches, and for a more complex
real-world map, up to 58%. This paper is a first step toward
using unconstrained sketch-maps in robot navigation.

I. INTRODUCTION

In search and rescue scenarios, a robot needs to perform
navigation in unknown environments. An example is the
SmokeBot project, which focuses on civil robots supporting
fire brigades and aims to enhance the performance of robots
under conditions of smoke, dust or fog. In communication
with fire departments and other relevant end users, we
identified that it is often possible to obtain prior information
about the place to explore. Fire fighters frequently have
maps of buildings which could be used as prior data. Good
prior maps of the place to explore can be obtained through
emergency maps or CAD drawings. However, the fire fighters
themselves usually have not been at the site. Therefore, those
maps can be hard to understand, especially in situations
of stress, leading to a complicated teleoperation of the
robot. This paper addresses this problem by introducing and
evaluating approaches that allow using sketch-maps as an
interface on top of the prior map.

Sketch-maps are very effective at conveying spatial con-
figurations and using them to direct a robot allows for
intuitive human-robot interactions [1]]. The robot could use
the building map as ground truth while sketches could
be obtained from people who are familiar with the place,
enabling non-expert people to help the robot in its navigation
and exploration mission.

Assuming the robot can localize itself in the prior map,
which is a topic of our ongoing work, robot navigation

Center of Applied Autonomous Sensor Systems (AASS), Orebro Univer-
sity, Sweden. firstname.lastname@oru.se

This work was funded in part by the EU H2020 project SmokeBot (ICT-
23-2014 645101) and by the Swedish Knowledge Foundation under contract
number 20140220 (AIR).

Fig. 1.

Interface using a sketch-map and robot navigating in smoke.

Ground Truth Map

Voronoi Diagram

Sketch Map
\J

Voronoi Diagram

\/ ’
Graph Extraction “ '
v /—\

3=l

Graph Extraction

v

Error-tolerant Graph Matching

Ti=

Fig. 2. Flowchart of the method.

commands could be sent by pointing at places in the sketch.
An example of such an interface can be seen in Fig [T}

II. HYPOTHESIS AND CONTRIBUTIONS

Sketch-maps are inherently inaccurate. They may be in-
complete and have large uncertainties in both shape and
scale: walls are not straight and the scale may not be
uniform. For an overview of sketch-maps and their utilities
and drawbacks, see Wang and Li [2]. To deal with these
inaccuracies, and to find the correspondences between the
sketch and the prior map, are the main focuses of this paper.

To use a sketch-map for navigation, one has to interpret
it and match it to a metric environment map: the real world
map or ground truth map. For our problem, matching means
that we need to be able to find elements of the sketch for
which we can find a correspondence in the real world map.
We define a ground truth map as the equivalent to a noise-
free occupancy grid map and the sketch-map as a free hand
drawing of the environment, as remembered by the user.

We separate the problem into two distinct parts :

o How to interpret the sketch and ground truth map.

o How to match the interpreted maps.

The contributions of this paper are :

o An interpretation method for sketch-maps.

o A graph matching method to find the correspondences

between sketch-maps and ground truth maps.

Our hypothesis is that a Voronoi diagram, extracted as in
Section is a useful representation of the topology of a
sketch-map and that an error-tolerant graph matching can

match the graphs built from the Voronoi diagrams of the
sketch and the ground truth map, while accounting for the
sketch-map inaccuracies.

A flowchart of the method can be seen in Fig

ITI. PREVIOUS WORK
A. Sketch-map and map matching

Existing map matching techniques require structurally
consistent maps. In Pyo, Shin, et al. [3]], multiple hypothesis
techniques track a robot in a cluttered environment and
match the map created from GPS measurements to a model
map. Probabilistic frameworks, as developed by Saeedi,
Paull, et al. [4], are useful when trying to find the relative
transformation between maps and fuse them. Some methods
account for partial deformations and cluttering by imposing a
threshold as in the work of Huang and Beevers [5]. However,
a general shortcoming of existing approaches is that they do
not afford matching maps with large structural differences.

In Skubic et al. [1]], [|6], [[7] sketch-map interfaces for robot
control have been implemented on a PDA, where objects are
closed polygons drawn by the user. The descriptors, used to
match the drawn objects to the ones seen by the robot, are
histograms of forces. Since we focus on indoor navigation for
emergency situations, we cannot use objects as landmarks.
Indeed, objects may not stay at the same place and are not
consistent landmarks. Furthermore, a map of isolated objects
matched using histograms of forces is not applicable for
dense, metric, indoor maps.

Another idea is to consider sketch-maps as a topolog-
ical environment representation. Several authors [8[—[|10]]
use such a topological map extracted from a sketch for
navigation. Shah and Campbell [10] use a topological sketch-
map representing distinct landmarks to create waypoints
using the Voronoi-Delaunay graph. Their landmarks are
independent, uniquely identifiable buildings. However, such
landmarks are not relevant in an indoor emergency scenario.
Setalaphruk, Ueno, et al. 8] use the crossings and dead-ends
of the Voronoi diagram of corridors as landmarks. Although
correct distances for the corridors are not needed, the walls
have to be straight and the existence and connectivity of
corridors have to be correct. These conditions do not hold for
hand-drawn sketch-maps, and therefore sketch-map matching
requires a more robust matching technique.

B. Graph matching and map matching

Graph matching is an important problem in graph theory.
The most relevant sub-problem for this work is the error-
tolerant maximal common subgraph (ETMCS) which is NP-
hard. There is a large body of literature about graph match-
ing, but here we chose to only relate to papers with a direct
connection to our present work. For a survey on the graph
matching techniques and learning in pattern recognition in
the last 10 years, see Foggia, Percannella, et al. [[11]].

Neuhaus and Bunke [12]] presented an algorithm to match
planar graphs. The algorithm grows a seed, neighborhood by
neighborhood, into a full graph-match. We have implemented
their algorithm and adapted it for sketch-map matching by

adding an explicit initialization step and incorporating salient
attributes from sketch-maps.

Huang and Beevers [5] merged topological maps by
finding all common connected subgraphs of two maps and
clustering the compatible subgraphs. Some attributes should
match perfectly (number of edges out of a vertex) and
others, must only match approximately (edge length or the
angle between edges). Saeedi, Paull, et al. [4] developed a
probabilistic SLAM algorithm for multiple robots. It uses
the probabilistic generalized Voronoi diagram to fuse maps
and account for uncertainties. Map fusion is done using
edge distances and shapes and is thus not directly applicable
for sketch-maps. Both those works assume there are no
missing vertices or edges in the graphs and are dependent
on the geometric consistency of the maps which is not an
assumption compatible with sketch-maps.

Wallgriin [13]] proposes to match maps using graph match-
ing and an annotated generalized Voronoi graph, solving
a data association problem between observations and the
robot’s internal map. The stability of vertices and edges,
and their relevance for navigation, determines the cost of
adding or deleting branches. Spatial constraints are heavily
used for better efficiency. The main difference as opposed to
our work lies in the heavy use of such constraints that are
not applicable when matching maps with nonuniform scale.

There is also a class of graph matching algorithms that
require large graphs, to gather statistical information for
matching, which cannot be applied to small graphs.

IV. SKETCH-MAP INTERPRETATION

Robot maps for navigation can be either metric, topolog-
ical or hybrids of both types.

We consider sketch-maps of buildings representing rooms
and corridors. Although they are metric maps, they do not
respect real world scales and proportions. They can miss
features, sometime even “on purpose”. E.g., a corridor could
be missing if the user judged it not important for navigation.

We chose to use topological maps for map matching.
While scale and proportion are inherent to metric maps, a
topological map allows us to compare maps of the same en-
vironment, even when they have large structural differences,
by choosing the graph attributes as described in Section

To reduce an occupancy grid to a topological map, the
Voronoi Diagram is often used [4]], [S]], [8]], [14]-[16[]. Schw-
ertfeger and Birk [[17] used the Voronoi diagram to evaluate
map quality by comparing graphs extracted from the Voronoi
diagrams. We hypothesize that the Voronoi diagram of the
environment can give us consistent information between the
sketch-map and the real world map. Indeed, keypoints such
as junctions and dead-ends should correspond to equivalent
places in both the sketch and the ground truth. Using the
Voronoi lines as edges between keypoints enable us to create
a consistent topological map.

To construct a Voronoi diagram, we calculate the Eu-
clidean distance image of the map, from which we extract
local minima with a Laplacian filter. A ’thinning parameter”
is used to remove spurious branches. The thinning parameter

Sketch map

Too simple EVG Voronoi diagram Voronoi graph

Fig. 3. Graph extraction from a grid map using the Voronoi diagram. In
the final graph dead-ends are in red, and junctions are in yellow.

is a fixed percentage of the minimum of the Laplacian image.
We experimentally found that keeping all pixels whose value
is less than 30% of the image’s strongest minimum’s value,
lead to clear Voronoi graphs.

Methods like EVG-thin [15]], [[18]] are commonly used in
robotics to extract the Voronoi diagram of a map. EVG-
thin [15] uses Zhang and Suen [18] method to iteratively
remove the contour of the free space in the map. While
relatively stable in the presence of walls with artifacts from
sensor noise, for sketch-maps the uncertainty is rather on the
drawing interpretation. Graphs extracted by EVG-thin ignore
important details by not considering them as part of the
skeleton and tuning ECG-thin’s parameters for every sketch
is costly and inefficient (Fig [3). In our method, we remove
the weakest part of the information thanks to a threshold
depending on the value of the strongest part of the Voronoi
diagram, which makes it more efficient at representing the
sketch the way the user intended us to understand it, as can
be seen in the results presented in Fig [3]

Using a line follower, we obtain our graph from the
Voronoi diagram. Graph vertices are placed at junctions and
dead-ends of the diagram, and graph edges at its lines. Fig[3]
illustrates how a graph can be extracted from a grid map via
a Voronoi diagram.

V. TOPOLOGICAL GRAPH MATCHING

Having extracted a graph representation for both maps we
aim at matching them; i.e., finding the best set of corre-
sponding vertex pairs between the two undirected graphs.
Working with sketch-maps, we need to cleverly select which
graph attributes to use for matching.

Firstly, we consider a vertex type that can be of two sorts.
Dead-end: every vertex that has only one edge. Junction:
every vertex that has two or more edges.

Secondly, we use the ordered list of edges. We assume that,
for any given sketch-map, the absolute position of landmarks
and the absolute distance between them are unreliable. But
their ordering, i.e. their relative position, is useful informa-
tion. This assumption means that, even though the drawing
has unknown proportion and nonuniform scale, the ordering
and succession of corridors and rooms, will most of the time
be valid. This is not a strong assumption considering the
nature of sketch-maps [2]]. Having the order of the edges
simplifies the problem from matching two sets of vertices, to
matching two ordered sets of vertices, making the matching
time linear in the degree of the vertex, while it’s polynomial
for a general graph.

We do not extract any other information from the edges
since other features are not expected to be reliably detectable

Data: seeds

Result: hypotheses_all
1 to_explore = {};

2 while seeds is not empty do

3 add first element of seeds to to_explore;
4 remove first element of seeds;

5 hypothesis = {};

6 while to_explore is not empty do

7
8
9

pair <= first element of to_explore;
remove first element of ro_explore;
add pair to hypothesis;
10 get the set of vertex matches from the neighbor of
the two vertices in pair;
11 for every match in the set of matches do
12 if both vertices in match are not already in
hypothesis then
13 ‘ add match to fo_explore;
14 if match is in seeds then
15 ‘ remove match from seeds;
16 edit_distance < get edit distance from hypothesis;
17 add hypothesis and edit_distance to hypothesis_all;

—

8 return hypotheses_all,
Algorithm 1: Graph-Edit-Distance matching algorithm.

in both the sketch and the ground truth map.

Having extracted the graphs, as outlined in Section
and their attributes as shown above, the following section
describes the method we use to match them.

To determine the ETMCS, one uses the edit-distance
between two graphs: the minimum number of basic mod-
ifications needed to transform one graph into the other. In
our work, we use the normalized Levenshtein edit-distance
(LED) [[19] which considers insertions, deletions and sub-
stitutions. Operations are prioritized by cost: no-operations
are prioritized over all other operations and substitutions are
prioritized over deletions and additions.

The method (see Algorithm [I)) is inspired by Neuhaus and
Bunke’s algorithm for matching planar graphs [[12] and our
main contributions are the initialization step and the usage
of the attributes defined above.

We define a hypothesis as a set of matched vertices
between two graphs defining a possible map-to-map match.
The key elements of Algorithm[I} explained in the remainder
of this section, are: 1) find all initialization seeds, 2) expand
the matching algorithm for every seed, 3) find the best
neighborhood matching for all matched vertices, 4) update
the edit distance of every possible matching found.

1) Initialization. We start by finding all pair-wise matches
between vertices of the same type in the two maps. We
call those matches seeds and store them in the set named
pairwise. In the worst case scenario (all vertices of both
graphs are of just one type), we will have n * m pair-wise
matches, with n and m the number of vertices in each graph.

The algorithm is launched for every seed, creating a new
hypothesis for each of them. Each hypothesis is associated
with its total edit distance and is a valid solution whose edit-
distance is an upper bound of a subset of all graph matching
solutions. In the worst case, the algorithm would run O(n *
m) times and return n * m hypotheses.

The hypothesis with the lowest edit distance is chosen as
the best possible matching between the maps.

2) Matching expansion. Every seed needs to be grown
into a final hypothesis. With hypothesis the current hypothe-
sis being grown, fo_explore the set of vertices left to explore
as possibly being part of hypothesis and hypotheses_all the
set of all explored hypotheses and their edit distances, every
seed in pairwise is expanded, by iteratively matching the
neighborhoods of the vertices that are added to to_explore.
All new vertex matches found in this step are added to
to_explore. This happens at line [I0] in Algorithm [1] and is
explained in step 3 below.

At line to speed up the algorithm, every time a new
match is the same as one of the seed, the seed is removed
from pairwise. This is to avoid expanding similar graph
matches from different seeds.

We iterate over all pairs in to_explore until the set is empty.
Once no more matches remain to explore, at line we
calculate the final edit distance of hypothesis (see step 4
below), add hypothesis to hypotheses_all and start growing
the next seed. We repeat the process until there are no more
seeds left to explore.

3) Neighborhood matching. The neighborhood matching
(line [E]) returns a list of vertex-to-vertex matches, corre-
sponding to the least expensive matching between the two
neighborhoods. The cost is defined by the LED and we define
a neighborhood the same way as Neuhaus and Bunke [12]: a
subgraph consisting of a vertex u plus all vertices connected
to u and all edges between those vertices.

This step uses string matching while taking into account
the information from the vertex matches already found. The
out-vertex’ type determines the character representing the
edge in the string and edges are ordered counter-clockwise.

If no vertices in the neighborhoods are already matched,
which is only the case for the seed, we use a cyclical
string matching algorithm. The worst case complexity, when
considering graph of bounded valence (maximum number of
edges connected to a vertex) v is O(v?).

Otherwise, we start by determining all the already-
matched vertices in each neighborhood. For n vertices al-
ready matched per neighborhood, we cut the neighborhoods,
between each of the n vertices, in n associated sub-strings.
By matching those sub-strings together, we obtain the best
matching between the neighborhoods while conserving the
information given by previous vertex matches. In the worst
case scenario, matching two strings is O(k = [) where k and
l are the sizes of the strings.

4) Edit distance update. At line to update the final
edit distance value between both graphs, all unmatched
vertices are removed. Each vertex removal has a cost of 1.
Once every unmatched vertex has been removed, we also
remove every edge that does not link two vertices anymore.
Each edge removal also costs 1.

VI. EXPERIMENTS AND RESULTS

We conducted two types of experiment to validate our
algorithm: random graph matching to validate the graph
matching method and to study its robustness with regard to

\

9
(a) Matching fails when adding
a vertex “in the middle”.

(b) Example of errors induced by
differences in the graph.

Fig. 4. Example of a matching failure. In Fig [Ab] the incorrectly matched
links are white. All gray links are linking to the same places. Most places
are matched correctly but the added vertex on top right leads to a partly
incorrect place matching.

errors in the graphs, and sketch-map matching to validate the

sketch-map interpretation.

A. Graph matching validation

To quantify robustness to errors in the graphs, we con-
structed synthetic graphs with increasing amounts of errors.
We created graphs of 10 to 50 vertices, all linked together
in a line. We added a fixed number of edges between
random vertices of the graph to create loops. Finally, for
each such graph we created a copy with a fixed amount of
corruption added, and tried to match the corrupted copy to
the original. This is to simulate a corrupted graph from the
sketch-map and a perfect graph from the ground-truth map.
A vertex match was considered correctly matched only if the
corrupt graph’s vertex corresponded to its exact counterpart
in the original. The goal is to determine at which amount of
corruption the original graph is not recognizable anymore.

One shortcoming of the graph matching algorithm lies in
its neighborhood-by-neighborhood matching: as in Fig
one wrong vertex in the middle of the graph can break the
iterative matching process. The graphs must not be broken
in multiple matching parts and a big enough succession of
correct nodes, that we call the “’skeleton” of the graph, must
be correctly extracted. For an example of a matching failure
due to a broken skeleton in a real sketch-map, see Fig b
Additional graph preprocessing could potentially detect and
remove those problematic vertices.

We have run the test procedure outlined above for different
amount of corruption, using 100 random graphs per graph
size and per corruption amount. We have not included
tests with more than 50 vertices since a graph of that size
corresponds to a map with more rooms/places than what can
be easily remembered and drawn.

To compare our matching algorithm to state of the art algo-
rithms, we also ran the procedure against the VF2 (sub)graph
matching algorithms [20]. VF2 is one the fastest graph
matching algorithm thanks to its linear memory complexity.

The results are summarized in Fig 5] As expected, the
algorithm is able to perfectly match a graph to itself: no
matching errors when the graphs are not corrupted. The
percentage of correct matches is always above 50%, even
when the corrupted graphs has equal amounts of corrupted
and correct information. E.g., the algorithm still extracts
56% good matches in graphs with 20 vertices and 100%

V=40 V=50

8 100

=

2 80

f 60

g 40 ours —+—
5 20 VE2 ==
)

0 50100 0 50100 O 50 100
% corruption

0 50 100 0O 50 100

Fig. 5. Comparing graph matching algorithms w.r.t. noise. V' is the number
of vertices in the original graph, corruption is the percentage of added
vertices and edges. Our method significantly outperforms VF2.

added corruption, and 68% good matches with graphs of
30 vertices and 70% added corruption. With a corruption
amount of 50%, for every graph size the algorithm correctly
matches more than 80%. To match two graphs of 50 vertices,
the algorithm takes 2.5s. It takes less than a second for
graphs under 40 vertices and around 1.1s for graphs of
40 vertices when ran on a core i7 with 16Gb of RAM.
When comparing the method to VF2, although not as fast,
our algorithm leads to vastly better matches than VF2. VF2
cannot handle heavy corruption, with results falling quickly
under 20%. The only case when VF2’s speed is relevant is for
graphs with no corruption, where, for graphs of 50 vertices
it took around 0.17 ms.

Having confirmed that the graph matching algorithm is
stable under noise, we can test the sketch-map interpretation.

B. Virtual environment

To build a sketch-map dataset, users were invited to
explore two places in a virtual environment in a web browser.
The first was custom-made and the second corresponded to
the ground truth of the KTH dataset for SLA (see Fig
and Fig [7). The custom environment was designed to be
simple so that users could easily memorize it, the KTH
map was selected to validate the algorithm on real-world
data. Anyone can test the virtual environment on the online
websiteﬂ The users were all anonymous.

We ran the method of Schwertfeger and Birk [17] on these
sketch-maps. Similarly to our approach, their method extracts
topological graphs from maps using Voronoi diagrams. To
achieve a good match between a sketch and a ground-truth
map, a certain number of parameters need to be selected.
However, even when the sketches represent the same envi-
ronment, the same parameter set cannot be applied for all.
For each sketch’s parameter set, their method failed to match
other sketch-maps on the ground truth maps. We hypothesize
that their method for extracting graphs is not designed for
inaccurate sketches, but rather for robot maps with relatively
small conceptual errors.

The matching evaluation for every sketch-map was made
by comparing the algorithm’s result to 4 ground truth sketch-
to-model matches (GTM), made by 4 independent users,
for each sketch-map. The GTM is the set of “best links”,
according to the user, between the features of the sketch-map

Uhttp://www.nada.kth.se/~johnf/kthdata/dataset.html
Zhttp://smokebot.eu/sketchmap- web/

Custom map KTH map
100 100 user] I
80 80 user2 |——
60 60 user3
40 40 user4
20 20 meat
0 0
ours EVG ours EVG
Fig. 6. Ground truth match (GTM) results for the two environments,

comparing results on a small custom map and on a more complex (KTH)
environment, of our map interpretation to that of EVG-thin.

Fig. 7.

GTM of a sketch-map for
the KTH dataset. Several vertices in
the sketch (right) are linked to one
point in the model map (left).

Fig. 8. Custom data set: Cor-
rect matching of a very distorted
sketch-map (right) to the ground
truth (left).

and the model map. The features were the ones extracted by
the sketch-interpretation method (Section [IV). To build the
GTMs, users were given an image of the sketch-map and
the equivalent ground truth map with all junction nodes of
their respective graphs printed, but without the edges or the
dead-end nodes. They were asked to draw links between the
junctions of the sketch and the ground truth map, fitting the
way they interpreted the drawing. They were free to draw
more than one link per junction, in case they thought that
one given junction could be matched to multiple junctions.
Fig [7] shows an example GTM.

Some sketch-maps were not understandable by the users
and were removed from the test. Out of the 15 sketches of
KTH, 4 sketches were removed. None of the simple map
sketches were removed. It must be noted that the KTH
sketch-maps were unconstrained hand drawings of a real
world place, explored in a virtual environment, and were
a lot harder to recognize, even for a human user.

For every graph match returned by the algorithm, a vertex-
to-vertex match from the algorithm was considered valid if
it corresponded to a match in the user GTM. The percentage
of good matches was calculated as the ratio between the
number of correct vertex-to-vertex matches and the max-
imum number of matches that could be extracted from a
GTM. We compared our Voronoi graph extraction to the well
established EVG-thin approach.

In Fig[6] we can see that the proposed algorithm performs
well for the custom map with around 94% of correct matches.
This can be explained by the simplicity of the environment,
which was easy to memorize and to draw, and from which we
got relatively accurate sketches. Additionally, users had no
problem interpreting the sketch map, even when far” from
the ground truth. The graphs extracted from the sketches by
the algorithm were clear and easy to match, for the user
making the GTMs, and for the algorithm itself (Fig [g).

For the KTH map, the algorithm produces 58% good
matches over the 4 users’ GTMs. KTH sketches were harder
to interpret for the users, the graphs extracted were messier

http://www.nada.kth.se/~johnf/kthdata/dataset.html
http://smokebot.eu/sketchmap-web/

H M
i

(a) Correct (b) Partially
match. correct match.

(c) Wrong match.

Fig. 9. Three different results of the matching algorithm. The sketch-maps,
on top, represent the inside of the KTH map, on the bottom. The white links
are the ones between vertices that should not be matched.

since the drawings were unconstrained and the shape of the
room was not easily identifiable (see Fig[9] for KTH sketches
with varying “qualities”).

Finding correspondences between a hand-drawn building
sketch-map and a ground truth is a very hard task, even for
humans, and there is no previous body of research on this
particular problem. We believe that a matching rate of 58%
for real-world sketches with large structural errors is a highly
encouraging first result.

VII. CONCLUSION AND FUTURE WORK

We have presented an algorithm to match hand drawn
sketch-maps to ground truth maps. We use a Voronoi diagram
to extract features from both maps. Those features are used
to construct a graph, where each vertex contains carefully
chosen attributes to be able to match the sketch-map’s graph
and the ground-truth’s graph.

The matching algorithm is an iterative process that grows
possible matching hypotheses from a given set of seeds. The
seeds are determined using the vertex attributes. After every
seed has been expanded, the best matching, as measured by
the lowest edit distance, is kept.

Our method quickly extracts features and do the matching.
It can cope with a certain amount of mistakes in the drawing:
errors in position, scale and mistakes in the presence or ab-
sence of rooms and corridors. We tested the graph matching
method against a state-of-the-art algorithm and the sketch-
map interpretation method against a similar interpretation
method for robot maps. Results were promising with twice
as many good matches for our proposed method.

It is notoriously difficult to extract noise-free Voronoi
diagrams, especially from drawings such as sketch-maps.
Nevertheless, using the procedure proposed in this paper
leads to substantially more robust interpretations of sketch-
maps than state-of-the-art methods [15], [17], [18]]. We
believe that a matching rate of 58% for real-world sketches
with large structural errors is a highly encouraging result.
From our experiments, it can also be concluded that it is
difficult to interpret free-hand drawings such as sketch-maps,
even for humans.

Future work includes studying additional preprocessing
steps of the Voronoi diagrams, as well as the use of
probabilistic matching techniques that have previously been
employed in the pattern analysis community [21]. We are

also working on alternative methods for extracting topo-
logical information from noisy maps, as well as ways of
incorporating the sketch into the robot’s SLAM process.

REFERENCES

[1] M. Skubic, D. Anderson, S. Blisard, D. Perzanowski, and A. Schultz,
“Using a hand-drawn sketch to control a team of robots,” en,
Autonomous Robots, vol. 22, no. 4, pp. 399-410, Mar. 2007.

[2] J. Wang and R. Li, “An empirical study on pertinent aspects of sketch
maps for navigation,” in ICCI* CC, IEEE, 2012, pp. 130-139.

[3]1 J.-S. Pyo, D.-H. Shin, and T.-K. Sung, “Development of a map
matching method using the multiple hypothesis technique,” in Proc.
IEEE Intelligent Transportation Systems, 2001, pp. 23-27.

[4] S. Saeedi, L. Paull, M. Trentini, M. Seto, and H. Li, “Efficient map
merging using a probabilistic generalized Voronoi diagram,” in /ROS,
Oct. 2012, pp. 4419-4424.

[5] W. H. Huang and K. R. Beevers, “Topological Map Merging,” en,
The International Journal of Robotics Research, vol. 24, no. 8,
pp. 601-613, Aug. 2005.

[6] M. Skubic, C. Bailey, and G. Chronis, “A sketch interface for mobile
robots,” in Proc. Systems, Man and Cybernetics, vol. 1, IEEE, 2003,
pp. 919-924.

[71 G. Parekh, M. Skubic, O. Sjahputera, and J. M. Keller, “Scene
matching between a map and a hand drawn sketch using spatial
relations,” in /ICRA, IEEE, 2007, pp. 4007—4012.

[8] V. Setalaphruk, A. Ueno, I. Kume, Y. Kono, and M. Kidode, “Robot
navigation in corridor environments using a sketch floor map,” in
Proc. Computational Intelligence in Robotics and Automation, vol. 2,
IEEE, 2003, pp. 552-557.

[91 G. Chronis and M. Skubic, “Robot navigation using qualitative
landmark states from sketched route maps,” in /CRA, vol. 2, IEEE,
2004, pp. 1530-1535.

[10] D.C. Shah and M. E. Campbell, “A qualitative path planner for robot
navigation using human-provided maps,” The International Journal
of Robotics Research, vol. 32, no. 13, pp. 1517-1535, Nov. 2013.

[11] P. Foggia, G. Percannella, and M. Vento, “Graph matching and
learning in pattern recognition in the last 10 years,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 28,
no. 01, Feb. 2014.

[12] M. Neuhaus and H. Bunke, “An Error-Tolerant Approximate Match-
ing Algorithm for Attributed Planar Graphs and Its Application to
Fingerprint Classification,” en, in Structural, Syntactic, and Statis-
tical Pattern Recognition, ser. Lecture Notes in Computer Science
3138, Springer Berlin Heidelberg, 2004, pp. 180-189.

[13] J. O. Wallgriin, “Voronoi Graph Matching for Robot Localization
and Mapping,” en, in Transactions on Computational Science IX,
ser. Lecture Notes in Computer Science 6290, Springer Berlin
Heidelberg, 2010, pp. 76-108.

[14] ——, “Hierarchical voronoi-based route graph representations for
planning, spatial reasoning, and communication,” in COGROB-2004,
Citeseer, 2004, pp. 64—69.

[15] P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous
topological place detection using the extended voronoi graph,” in
ICRA, IEEE, 2005, pp. 4373-4379.

[16] S. Saeedi, L. Paull, M. Trentini, M. Seto, and H. Li, “Group Map-
ping: A Topological Approach to Map Merging for Multiple Robots,”
IEEE Robotics Automation Magazine, vol. 21, no. 2, pp. 60-72, Jun.
2014.

[17] S. Schwertfeger and A. Birk, “Evaluation of map quality by matching
and scoring high-level, topological map structures,” in /CRA, May
2013, pp. 2221-2226.

[18] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning
digital patterns,” Commun. ACM, vol. 27, no. 3, pp. 236-239, Mar.
1984.

[19] L. Yujian and L. Bo, “A normalized levenshtein distance metric,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 6, pp. 1091-1095, Jun. 2007.

[20] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10,
pp. 1367-1372, Oct. 2004.

[21] R. Myers, R. Wison, and E. Hancock, “Bayesian graph edit distance,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 6, pp. 628—635, Jun. 2000.

	Introduction
	Hypothesis and Contributions
	Previous Work
	Sketch-map and map matching
	Graph matching and map matching

	Sketch-map interpretation
	Topological graph matching
	Experiments and results
	Graph matching validation
	Virtual environment

	Conclusion and future work

